
A Geometric Model for On-line Social Networks∗

Anthony Bonato
Department of Mathematics

Ryerson University

Jeannette Janssen
Department of Mathematics and Statistics

Dalhousie University

Paweł Prałat
Department of Mathematics

West Virginia University

Abstract

We study the link structure of on-line social networks
(OSNs), and introduce a new model for such networks
which may help infer their hidden underlying reality.
In the geo-protean (GEO-P) model for OSNs nodes are
identified with points in Euclidean space, and edges are
stochastically generated by a mixture of the relative dis-
tance of nodes and a ranking function. With high prob-
ability, the GEO-P model generates graphs satisfying
many observed properties of OSNs, such as power law
degree distributions, the small world property, densifica-
tion power law, and bad spectral expansion. We intro-
duce the dimension of an OSN based on our model, and
examine this new parameter using actual OSN data. We
discuss how the dimension parameter of an OSN may
eventually be used as a tool to group users with similar
attributes using only the link structure of the network.

1. Introduction

On-line social networking sites such as Facebook, Flickr,
LinkedIn, MySpace, and Twitter are examples of large-
scale, complex, real-world networks, with an estimated
total number of users that equals half of all Internet users
[2]. We may model an OSN by a graph with nodes rep-
resenting users and edges corresponding to friendship
links. While OSNs gain increasing popularity among the
general public, there is a parallel increase in interest in
the cataloguing and modelling of their structure, func-
tion, and evolution. OSNs supply a vast and historically
unprecedented record of large-scale human social inter-
actions over time.

The availability of large-scale social network data has
led to numerous studies that revealed emergent topologi-
cal properties of OSNs. The next challenge is the design
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and rigorous analysis of models simulating these proper-
ties. Graph models were successful in simulating prop-
erties of other complex networks like the web graph (see
the books [4, 7] for surveys of such models), and it is thus
natural to propose models for OSNs. Few rigorous mod-
els for OSNs have been posed and analyzed, and there
is no universal consensus of which properties such mod-
els should simulate. Notable recent models are those of
Kumar et al. [16], which focused on simulating the com-
ponent structure of OSNs, and the ILT model [5] based
on transitivity properties of social networks.

Researchers are now in the enviable position of ob-
serving how OSNs evolve over time, and as such, net-
work analysis and models of OSNs typically incorpo-
rate time as a parameter. While by no means exhaustive,
some of the main observed properties of OSNs include
the following.

(i) Large-scale.OSNs are examples of complex net-
works with number nodes (which we write asn) often in
the millions; further, some users have disproportionately
high degrees. For example, each of the nodes of Twitter
corresponding to celebrities Ashton Kutcher, Ellen De-
generes, and Britney Spears have degree over four mil-
lion [24].

(ii) Small world property.The small world property,
introduced by Watts and Strogatz [25], is a central no-
tion in the study of complex networks, and has roots in
the work of the Milgram [21] on short paths of friends
connecting strangers in the United States. The small
world property demands a low diameter ofO(log n), and
a higher clustering coefficient than found in a binomial
random graph with the same number of nodes and same
average degree. Adamic et al. [1] provided an early study
of an OSN at Stanford University, and found that the
network has the small world property. Similar results
were found in [2] which studied Cyworld, MySpace, and
Orkut, and in [22] which examined data collected from
Flickr, YouTube, LiveJournal, and Orkut. In the latter
study, the average distances and clustering coefficients
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of the OSNs were found to be lower and higher, respec-
tively, than those of the web graph. Low diameter (of6)
and high clustering coefficient were reported in the Twit-
ter by Java et al. [14] (see also [15]).

(iii) Power law degree distributions.In a graphG
of order n, let Nk be the number of nodes of degree
k. The degree distribution ofG follows a power lawif
Nk is proportional tok−b, for a fixed exponentb > 2.
Power laws were observed over a decade ago in sub-
graphs sampled from the web graph, and are ubiquitous
properties of complex networks (see Chapter 2 of [4]).
Kumar, Novak, and Tomkins [16] studied the evolution
of Flickr and Yahoo!360, and found that these networks
exhibit power-law degree distributions. Golder et al. [11]
discovered a power law degree distribution in the Face-
book network. Power law degree distributions for both
the in- and out-degree distributions were documented in
Flickr, YouTube, LiveJournal, and Orkut [22], as well as
in Twitter [14].

(iv) Shrinking distances.Kumar et al. [16] reported
that in Flickr and Yahoo!360 the diameter actually de-
creases over time. Similar results were reported for Cy-
world in [2]. Well-known models for complex networks
such as preferential attachment or copying models have
logarithmically growing diameters with time. Various
models (see [17, 18]) were proposed simulating power
law degree distributions and decreasing distances.

(v) Bad spectral expansion.Social networks often or-
ganize into separate clusters in which the intra-cluster
links are significantly higher than the number of inter-
cluster links. In particular, social networks contain com-
munities (characteristic of social organization), where
tightly knit groups correspond to the clusters [23]. As
a result, it is reported in [9] that social networks, unlike
other complex networks, possess bad spectral expansion
properties realized by small gaps between the first and
second eigenvalues of their adjacency matrices.

Our main contributions in the present work are to pro-
vide a model—the geo-protean (GEO-P) model—which
simulates all five properties above (see Section 3), and to
suggest a reverse engineering approach to OSNs. Given
only the link structure of OSNs, we ask whether it is pos-
sible to infer the hidden reality of such networks. Can
we group users with similar attributes from only the link
structure? For instance, a reasonable assumption is that
out of the millions of users on a typical OSN, if we could
assign the users various attributes such as age, sex, re-
ligion, geography, and so on, then we should be able to
identify individuals or at least small sets of users by their
set of attributes. Thus, if we can infer a set of identify-
ing attributes for each node from the link structure, then
we can use this information to recognize communities
and understand connections between users. Such an ap-
proach could eventually be used for targeted advertising,

or even to identify terrorist cells in OSNs.
Characterizing users by a set of attributes leads natu-

rally to a vector-based or geometric approach to OSNs.
In geometric graph models, nodes are identified with
points in a metric space, and edges are introduced by
probabilistic rules that depend on the proximity of the
nodes in the space. We envision OSNs as embedded in a
social space, whose dimensions quantify user traits such
as interests or geography; for instance, nodes represent-
ing users from the same city or in the same profession
would likely be closer in social space. A first step in
this direction was given in [19], which introduced a rank-
based geometric model for social networks. Such an ap-
proach was taken in the SPA geometric model for the
web graph; see [3]. In [13] it is shown how a theoret-
ical analysis of the SPA model leads to a highly accu-
rate measure for the estimated spatial distance between
nodes, based on the number of common neighbours.

The geo-protean model incorporates a geometric view
of OSNs, and also exploits ranking to determine the link
structure. Higher ranked nodes are more likely to receive
links. A formal description of the model is given in Sec-
tion 2. Results on the model are summarized in Sec-
tion 3. We present a novel approach to OSNs by assign-
ing them a dimension; see the formula (4). Given certain
OSN statistics (order, power law exponent, average de-
gree, and diameter), we can assign each OSN a dimen-
sion based on our model. In a certain sense, the dimen-
sion of an OSN is the least integerm such that we can
accurately embed the OSN inm-dimensional Euclidean
space. A suggestive (although unproven) interpretation
of the dimension is that it equals the least number of at-
tributes needed to identify individuals or small sets of
users. A sketch of proofs of our results are presented in
Section 4. We conclude with a discussion of our findings,
and present an outline of future work.

2. The GEO-P Model for OSNs

We now present our model for OSNs, which is based
on both the notions of embedding the nodes in a met-
ric space (geometric), and a link probability based on a
ranking of the nodes (protean). We identify the users of
an OSN with points inm-dimensional Euclidean space.
Each node has a region of influence, and nodes may be
joined with a certain probability if they land within each
others region of influence. Nodes are ranked by their
popularity from1 to n, wheren is the number of nodes,
and1 is the highest ranked node. Nodes that are ranked
higher have larger regions of influence, and so are more
likely to acquire links over time. For simplicity, we con-
sider only undirected graphs. The number of nodesn is
fixed but the model is dynamic: at each time-step, a node
is born and one dies. A static number of nodes is more
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representative of the reality of OSNs, as the number of
users in an OSN would typically have a maximum (an ab-
solute maximum arises from roughly the number of users
on the internet, not counting multiple accounts). For a
discussion of ranking models for complex networks, see
[10, 12, 20].

We now formally define the GEO-P model. The
model produces a sequence(Gt : t ≥ 0) of undi-
rected graphs onn nodes, wheret denotes time. We
write Gt = (Vt, Et). There are four parameters: the
attachment strengthα ∈ (0, 1), the density parameter
β ∈ (0, 1−α), thedimensionm ∈ N, and thelink proba-
bility p ∈ (0, 1]. Each nodev ∈ Vt has rankr(v, t) ∈ [n]
(we use[n] to denote the set{1, 2, . . . , n}). The rank
functionr(·, t) : Vt → [n] is a bijection for allt, so ev-
ery node has a unique rank. The highest ranked node has
rank equal to 1; the lowest ranked node has rankn. The
initialization and update of the ranking is done byran-
dom initial rank. In particular, the node added at time
t obtains an initial rankRt which is randomly chosen
from [n] according to a prescribed distribution. Ranks
of all nodes are adjusted accordingly. Formally, for each
v ∈ Vt−1,

r(v, t) = r(v, t − 1) + δ − γ,

whereδ = 1 if r(v, t − 1) > Rt and0 otherwise, and
γ = 1 if the rank of the node deleted in stept is smaller
thanr(v, t − 1), and0 otherwise.

Let S be the unit hypercube inRm, with the torus met-
ric d(·, ·) derived from theL∞ metric. In particular, for
any two pointsx andy in R

m,

d(x, y) = min{||x − y + u||∞ : u ∈ {−1, 0, 1}m}.

The torus metric is chosen so that there are no bound-
ary effects, and altering the metric will not significantly
affect the main results.

To initialize the model, letG0 = (V0, E0) be any
graph onn nodes that are chosen fromS. We define the
influence regionof nodev at timet ≥ 0, writtenR(v, t),
to be the ball aroundv with volume

|A(v, t)| = r(v, t)−αn−β .

For t ≥ 1, we formGt from Gt−1 according to the fol-
lowing rules.

(i) Add a new nodev that is chosenuniformly at ran-
dom from S. Next, independently, for each node
u ∈ Vt−1 such thatv ∈ R(u, t − 1), an edgevu
is created with probabilityp. Note that the prob-
ability that u receives an edge is proportional to
p r(u, t − 1)−α. The negative exponent guarantees
that nodes with higher ranks (r(u, t − 1) close to
1) are more likely to receive new edges than lower
ranks.

(ii) Choose uniformly at random a nodeu ∈ Vt−1,
deleteu and all edges incident tou.

(iii) Update the ranking functionr(·, t) : Vt → [n].

Since the process is an ergodic Markov chain, it will
converge to a stationary distribution. The random graph
corresponding to this distribution with given parameters
α, β,m, p is called thegeo-protean(or GEO-Pmodel)
graph, and is written GEO-P(α, β,m, p). See Figure 1
for a simulation of the model in the unit square.

Figure 1: A simulation of the GEO-P model, withn =
5, 000, α = 0.7, β = 0.15, m = 2, andp = 0.9.

3. Results and Dimension

We now state the main theoretical results on the geo-
protean model. The model generates with high probabil-
ity graphs satisfying each of the properties (i) to (v) in the
introduction. Proofs are sketched (or omitted due to lack
of space) in Section 4; complete proofs will appear in the
full version. Throughout, we will use the stronger notion
of wepin favour of the more commonly usedaas, since it
simplifies some of our proofs. We say that an event holds
with extreme probability(wep), if it holds with probabil-
ity at least1− exp(−Θ(log2 n)) asn → ∞. Thus, if we
consider a polynomial number of events that each holds
wep, thenwepall events hold.

Let Nk = Nk(n, p, α, β) denote the number of nodes
of degreek, andN≥k =

∑

l≥k Nl. The following the-
orem demonstrates that the geo-protean model generates
power law graphs with exponent

b = 1 + 1/α. (1)

Note that the variablesN≥k represent the cumulative de-
gree distribution, so the degree distribution has power
law exponent1/α.
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Theorem 3.1. Let α ∈ (0, 1), β ∈ (0, 1 − α), m ∈ N,
p ∈ (0, 1], and

n1−α−β log1/2 n ≤ k ≤ n1−α/2−β log−2α−1 n.

ThenwepGEO-P(α, β,m, p) satisfies

N≥k =
(

1 + O(log−1/3 n)
) α

α + 1
p1/αn(1−β)/αk−1/α.

For a graphG of ordern, define theaverage degree of
G by d = 2|E|

n . Our next results shows that geo-protean
graphs are dense.

Theorem 3.2. Wep the average degree of GEO-
P(α, β,m, p) is

d = (1 + o(1))
p

1 − α
n1−α−β . (2)

Note that the average degree tends to infinity withn;
that is, the model generates graphs satisfying adensi-
fication power law. In [17], densification power laws
were reported in several real-world networks such as the
physics citation graph and the internet graph at the level
of autonomous systems.

Our next result describes the diameter of graphs sam-
pled from the GEO-P model. While the diameter is not
shrinking, it can be made constant by allowing the di-
mension to grow as a function ofn.

Theorem 3.3. Let α ∈ (0, 1), β ∈ (0, 1 − α), m ∈
N, and p ∈ (0, 1]. Thenwep the diameter of GEO-
P(α, β,m, p) is

O(n
β

(1−α)m log
2α

(1−α)m n). (3)

We note that in a geometric model where regions of
influence have constant volume and possessing the same
average degree as the geo-protean model, the diameter
is Θ(n

α+β
m ). This is a larger diameter than in the GEO-

P model. Ifm = C log n, for some constantC > 0,
then wep we obtain a diameter of constant order. We
can also prove (and will be presented in the full version)
thatwepthe GEO-P model generates graph with constant
clustering coefficient.

The normalized Laplacian of a graph, introduced by
Chung [6], relates to important graph properties. Let
A denote the adjacency matrix andD denote the di-
agonal degree matrix of a graphG. Then the normal-
ized Laplacian ofG is L = I − D−1/2AD−1/2. Let
0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 denote the eigenvalues
of L. Thespectral gapof the normalized Laplacian is

λ = max{|λ1 − 1|, |λn−1 − 1|}.

A small spectral gap is an indication of bad expansion
properties, which are characteristic of OSNs (see prop-
erty (v) in the introduction).

The following theorem suggests a significantly smaller
spectral difference between graphs generated by our
model than in random graphs.

Theorem 3.4. Let α ∈ (0, 1), β ∈ (0, 1 − α), m ∈
N, andp ∈ (0, 1]. Let λ(n) be the spectral gap of the
normalized Laplacian of GEO-P(α, β,m, p). Thenwep

(i) If m = m(n) = o(log n), thenλ(n) = 1 + o(1).

(ii) If m = m(n) = C log n for someC > 0, then

λ(n) ≥ 1 − exp

(

−α + β

C

)

.

Theorem 3.4 represents a drastic departure from the
good expansion found in random graphs, whereλ =
o(1) [6, 7].

3.1. Dimension of OSNs

Given an OSN, we describe how we may find the corre-
sponding dimension parameterm if we assume the GEO-
P model.In particular, if we know the ordern, power law
exponentb, average degreed, and diameterD of an OSN,
then we can calculatem using the formulas (1), (2), and
(3). The formula form then (ignoring constants in the
O(·) andΩ(·) notation) becomes

m =

log

(

n

2d(
b−1
b−2 )

)

log D
(4)

Note that (4) suggests a logarithmic growth for the di-
mensionm depending onn.

The parametersb, d, andD have been determined for
samples from OSNs in various studies such as [2, 22, 14].
The following chart summarizes this data and gives the
dimension for each network, with citations (next to the
name of the network) where the data was taken. We
roundm up to the nearest integer. Owing to the large-
scale character of these networks, our assumption is that
the parametersb, d,D found in those samples approxi-
mate the ones in the entire network. We note that the
estimates of the number of usersn for Flickr and Twitter
come from Wikipedia [26], those from YouTube comes
from their website [27], and those of Cyworld are from
[8]. When the data consisted of directed graphs, we took
b to be the power law exponent for the in-degree distri-
bution. As noted in [2], the power law exponent ofb = 5
for Cyworld holds only for users whose degree is at most
approximately100.
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Parameter OSN
Cyworld [2] Flickr [22]

n 1.2 × 107 3.2 × 107

b 5 2.78
d 31.6 12.24
D 6 27
m 7 4

Parameter OSN
Twitter [14] YouTube [22]

n 4.55 × 107 3 × 108

b 2.4 2.99
d 18.86 4.29
D 6 21
m 4 6

4. Proofs of Results

Owing to space constraints, we only give sketches of the
proofs of the degree distribution and diameter results of
Section 3. Complete proofs of all the results will ap-
pear in the full version of the paper. The following theo-
rem (whose proof is omitted) shows how the degree of a
given node depends on theage rank; that is, the bijection
a(·, t) : Vt → [n] where nodes are ranked by age (the
oldest node has rank equal to 1, and the youngest one
has rankn).

Theorem 4.1. Let α ∈ (0, 1), β ∈ (0, 1 − α), m ∈ N,
p ∈ (0, 1], i = i(n) ∈ [n]. Let vi be the node in
GEO-P(α, β,m, p) whose age rank at timeL equals
a(vi, L) = i, and letRi be the initial rank ofvi.

If Ri ≥
√

n log2 n, thenwep

deg(vi,L)=(1+O(log−1/2 n))p
“

i
(1−α)n

+(Ri
n )

−α n−i
n

”

n1−α−β .

Otherwise, that is, ifRi <
√

n log2 n, wep

deg(vi,L) ≥ (1+O(log−1/2 n)) p( i
(1−α)n

+nα/2 log−2α n n−i
n )

×n1−α−β .

Theorem 4.1 implies thatwepthe minimum degree is
(1 + o(1))pn1−α−β . Moreover, the average degree is

d = (1 + o(1))
2

n

n
∑

i=1

p

1 − α

i − 1

n − 1
n1−α−β

= (1 + o(1))
p

1 − α
n1−α−β .

Hence, the proof of Theorem 3.2 follows.

Proof of Theorem 3.1.By Theorem 4.1 it follows that
wep each nodevi that has the initial rankRi ≥√

n log2 n such that

Ri

n
≥

(

1 + log−1/3 n
)

(

pn1−α−β n − i

n
k−1

)1/α

has fewer thank neighbours, and each nodevi for which

Ri

n
≤

(

1 − log−1/3 n
)

(

pn1−α−β n − i

n
k−1

)1/α

has more thank neighbours.
Let i0 be the largest value ofi such that

(

pn1−α−β n − i

n
k−1

)1/α

≥ 2 log2 n√
n

.

(Note that i0 = n − O(n/ log n), since k ≤
n1−α/2−β log−2α−1 n.) Thus,

EN≥k =
Pi0

i=1

(

1+O(log−1/3 n)
)

(pn1−α−β n−i
n k−1)

1/α

+O
“

Pn
i=i0+1

log2 n
√

n

”

=
(

1+O(log−1/3 n)
)

(pn−α−βk−1)
1/α Pn

i=1(n−i)1/α

=
(

1+O(log−1/3 n)
)

(pn−α−βk−1)
1/α n1+1/α

1+1/α

=
(

1+O(log−1/3 n)
)

α
α+1 p1/αn(1−β)/αk−1/α.

and the assertion follows from the Chernoff bound,
since k ≤ n1−α/2−β log−2α−1 n and soEN≥k =

Ω(
√

n log2+1/α n).

We now consider the diameter of graphs generated by
the GEO-P model.

Proof of Theorem 3.3.We partition the hypercube into
1/A hypercubes, each of volumeA (with A to be de-
termined later). Consider nodes with initial rank at most
R and age at mostn/2 (again,R to be determined later).
In each small hypercube, we would like to havelog2 n
such nodes whose initial influence region contains the
whole hypercube in which the node is located, and also
all neighbouring hypercubes.

It can be shown thatwepthis is the case and remains
so to the end of the process, if the initial influence region
is slightly larger than4mA; say, at least5mA. Therefore,
we obtain that

R−αn−β = 5mA. (5)

It follows from the Chernoff bound thatwepevery small
hypercube containslog2 n such nodes, provided that the
expected number is at least, say,2 log2 n. Hence, we
require that

n

2
A

R

n
= 2 log2 n. (6)
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Combining (5) and (6) we obtain that the number of hy-
percubes is equal to

1

A
= 5

m+α
1−α n

β
1−α log

2α
1−α n.

Now, sincewep there arelog2 n nodes in each hyper-
cube to choose from,wepwe can select exactly one node
from each hypercube so that each node is adjacent to
the chosen nodes from all neighbouring hypercubes (the
younger node falls into the region of influence of the
older neighbours, and creates an edge with probability
p). Let us call this subgraph thebackbone. It is clear that
the diameter of the backbone is

(

1

A

)1/m

= O(n
β

(1−α)m log
2α

(1−α)m n)

To finish the proof, we will show thatwepany nodev
that is not in the backbone is within distance two from
some node in the backbone. Sincewep the minimum
degree isΩ(n1−α−β), wep Ω(n1−α−β) neighbours of
v have age rank at leastn/2. Since each such neigh-
bour falls into the region of influence of some node in
the backbone,wepat least one neighbour ofv must be
connected the backbone.

5. Conclusion and Discussion

We introduced the geo-protean (GEO-P) geometric
model for OSNs, and showed that with high probability,
the model generates graphs satisfying each of the prop-
erties (i) to (v) in the introduction. We introduce the di-
mension of an OSN based on our model, and examine
this new parameter using actual OSN data. We observed
that the dimension of various OSNs ranges from four to
7. It may therefore, be possible to group users via a rel-
atively small number of attributes, although this remains
unproven.

The ideas of using geometry and dimension to explore
OSNs is a novel one, and deserves to be more thoroughly
investigated. It would be interesting to explore how best
to fit OSNs into Euclidean space, with an emphasis on
the accuracy of the embedding. Our hope is that a ge-
ometric structure exhibited by social networks may be
used to further explore properties of the network. Can
a geometric embedding of OSNs help determine their
community structure? Another direction is to examine
the edge-length distribution in the GEO-P model, and
then apply that to actual OSN to classify “long” links
in social networks.
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