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Abstract. Recently proposed models of self-organizing networks
like the web graph often incorporate some form of vertex copying
in their design. The infinite limits of graphs generated by these
models are almost surely isomorphic to the copying graphs, which
are characterized by graph foldings and local versions of adjacency
properties satisfied by the infinite random graph. Each finite con-
nected graph H gives rise to an infinite copying graph RH .

We study the endomorphisms and automorphisms of copying
graphs. We prove that the natural order on the retracts of copy-
ing graphs embed all countable orders, while the endomorphism
monoid of RH is simple and embeds all countable semigroups. We
consider which isomorphisms between finite induced subgraphs of
RH extend to automorphisms, and prove that all countable groups
embed in the automorphism groups of copying graphs. The iso-
morphism types of the graphs RH are related to the folding order
on finite graphs. We study combinatorial properties of the folding
order and prove that it embeds all finite orders.

1. Introduction

The web graph has vertices representing web pages, and edges rep-
resenting the links between pages. It is a real-world self-organizing
network possessing several billion vertices and edges, with vertices and
edges appearing and disappearing over time. Another example of a
self-organizing network is the protein-protein interaction network in a
living cell. For recent surveys on the web graph and self-organizing
networks, see [2, 4]. In self-organizing networks, each vertex acts as
an independent agent, which will base its decision on how to link to
the existing network on local knowledge. For this reason, many of the
stochastic models of self-organizing networks incorporate some type of
vertex copying in their design; see [12, 16]. For instance, consider the
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duplication model of [12]. In this model, vertices are added over a
countable sequence of discrete time-steps, and p is a fixed probability
in (0, 1). At time t+1, an existing vertex u is chosen uniformly at ran-
dom. A new vertex v is then added, and for each neighbour w of u, v
is joined to w independently with probability p. Hence, the neighbours
of the new node v form an imperfect copy of the neighbours of u.

In [6], a study was made of infinite limits of graphs generated by
models of self-organizing networks. With probability 1, such limits sat-
isfy the locally e.c. adjacency property, which is motivated by the local
copying behaviour found in models of self-organizing networks. Define
the neighbourhood of y in G, written NG(y), as the set {x : xy ∈ E(G)}.
We will write N(y) if G is clear from context. A graph G is locally ex-
istentially closed or locally e.c. if for all vertices y, finite S ⊆ N(y),
finite T ⊆ V (G)\S, there is a vertex not in S ∪ T ∪ {y} joined to each
vertex of S and to no vertex of T. If we remove reference to y, then
we have the e.c. property. The unique isomorphism type of countably
infinite e.c. graph is named the infinite random graph, or the Rado
graph, and is usually written R; see the surveys [9, 10]. In contrast to
this property of R, [6] showed that there are 2ℵ0 many non-isomorphic
countable locally e.c. graphs.

Let H be a fixed finite connected graph, and let R0
∼= H. Assume

that Rt is defined and is countable. For each vertex y ∈ V (Rt), and
each non-empty subset S ⊆ N(y), add a new vertex xy,S joined only
to S. This gives the finite graph Rt+1 which contains Rt as an induced
subgraph. Define RH = limt→∞ Rt, where V (RH) =

⋃
t∈N V (Rt) and

E(RH) =
⋃

t∈NE(Rt). We refer to the graphs RH as copying graphs.
Copying graphs were first studied in [6] in the context of limits of web
graph models. In [6] it was proved that RH is locally e.c. but not e.c.,
and the chromatic number of RH equals the chromatic number of H. It
is not hard to see that RH is connected with infinite diameter. (If H is
the disjoint union of connected graphs X and Y , then RH is isomorphic
to the disjoint union of RX and RY . For this reason, we will always
assume H is connected in the definition of RH .)

All graphs we consider are simple, undirected, and countable. We
write G ≤ H if G is isomorphic to an induced subgraph of H. If
S ⊆ V (G), then we write G ¹ S for the subgraph induced by S. If G
and H are graphs, then a vertex-mapping from G to H is a function
f : V (G) → V (H). We will abuse notation and write f : G → H.
We denote the image of f as Im(f) or f(G) (considered as a subset of
V (H)). A vertex mapping f : G → H is an embedding if G ¹ f(G) ≤ H.
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A vertex mapping f : G → H with the property that xy ∈ E(G) im-
plies that f(x)f(y) ∈ E(H) is a homomorphism. We write G → H
to denote that G admits a homomorphism to H without reference to
a specific mapping. A homomorphism from G to itself is an endo-
morphism. For additional background on graph homomorphisms, the
reader is directed to [13]. The endomorphism monoid (or monoid) of
G under composition is written End(G). The automorphism group (or
group) of G is written Aut(G). We write ℵ0 for the cardinality of the
natural numbers N (which includes 0), and 2ℵ0 for the cardinality of
the real numbers.

The monoid of R was investigated in [3, 5, 11], while the group of
R was studied by numerous authors; see the surveys [9, 10]. In the
present article, we focus on the monoid and group of copying graphs,
which we will demonstrate share some of the properties of the monoid
and group of R. In Theorem 7, we prove that for each finite connected
H, End(RH) contains uncountably many principal ideals. From this, we
derive that the natural order on retracts of RH embeds each countable
order. We prove in Theorem 10 that End(RH) embeds all countable
monoids; an analogous result for groups with regard to Aut(RH) is
proven in Theorem 11. Our techniques rely on certain retracts called
foldings endomorphisms (see Section 2). Foldings of finite graphs give
rise to an order, named the folding order. We investigate combinatorial
properties of the folding order in Section 4, and prove in Theorem 16
that all finite orders embed in the folding order.

2. Endomorphisms of copying graphs

Graph homomorphisms are used in describing the induced subgraphs
of RH. The following theorem was proved in [7].

Theorem 1. If G and H are countable graphs, then G ≤ RH if and
only if G → H.

A retract of G is an endomorphism f with the property that f 2 = f.
In particular, f is the identity on its image. The set of all retracts of
G is written EEnd(G). Although EEnd(G) is usually not a monoid,
the retracts of G are equipped with an order: if f, g ∈ EEnd(G), then
f ≤ g if and only if fg = gf = f. (We use the term “order” rather than
“partial order”.) We refer to this as the natural order on EEnd(G).
For more information on the natural order of retracts, see [1].

Suppose that H, J are finite graphs such that H ≤ J . Define H 41 J
if H = J or there is a vertex v in J and u in H = J − v such that
u and v are non-joined, and N(v) ⊆ N(u). We say that v folds onto
u. We write H 4 J if there is a nonnegative integer m and graphs



4 ANTHONY BONATO, PETER J. CAMERON, AND DEJAN DELIĆ

H0
∼= H, H1, . . . , Hm = J so that Ht 41 Ht+1 for all 0 ≤ t ≤ m − 1.

Note that the relation 4 is an order relation on the class of all finite
graphs. We write this order as (G, ¹), and name it the folding order.
For example, K2 4 T where T is a tree, while cliques of different orders
are incomparable in (G, ¹). The graphs above K2 in the folding order
are sometimes called cop-win or dismantlable graphs ; see [8].

We extend the folding to countable graphs as follows. Let H and
J be countable graphs. The relation H 41 J is defined exactly as in
the finite case. We write H 4 J if there exists a countable sequence of
order type at most ω (that is, finite, or the order type of N) of countable
graphs (Ht : t ∈ N) so that

(1) H0 = H,
(2) Ht 41 Ht+1 for all t ∈ N, and
(3) J = limt→∞ Ht.

Without loss of generality, we may replace item (2) by: Ht 4 Ht+1

for all t ∈ N. For example, K2 ¹ G, where G is an infinite one-way
path (or ray). Note that for all t > 0, H ¹ Rt, and Rt ¹ Rt+1. Hence,
H ¹ RH . By Theorem 1, C6 ≤ RK2 , despite the fact that K2 � C6.

Following [8], we say that a finite graph H is stiff if it is minimal
in (G, ¹); that is, there is no J ≤ H such that J ¹ H. Cliques and
cycles are stiff, while the only stiff finite tree is K2. By Theorem 4.4 of
[8], each graph H contains a unique (up to isomorphism) stiff induced
subgraph, written c(H), such that c(H) ¹ H. We refer to c(H) as the
stiff-core of H. The following theorem was proved in [7], and shows the
close connection between the folding order and the graphs RH .

Theorem 2. Let H and J be finite connected graphs. If H 4 J , then
J ≤ RH and RH

∼= RJ . In particular, RH
∼= Rc(H).

We will investigate properties of the folding order in Section 4. Let
J = limt→∞ Ht be a limit of a countable chain C = (Ht : t ∈ N) of
graphs. Define ageJ,C : V (J) → N by

ageJ,C(x) =

{
t if x ∈ V (Ht)\V (Ht−1) where t > 0
0 else.

We will simply write age(x) if J and C are clear from context. We now
consider certain special retracts that will be useful for our discussion of
the monoid and group of RH . A retract f : G → G is a folding endo-
morphism if G ¹ f(G) ¹ G, and the set of all folding endomorphisms
of G is written FEnd(G). We establish the connection between foldings
and folding endomorphisms in the following lemma.

Lemma 3. If H ¹ G, then there is f ∈ FEnd(G) with f(G) = V (H).
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Proof. Suppose that (Gt : t ∈ N) is a countable sequence of graphs so
that G0 = H,Gt 41 Gt+1 for all t ∈ N, and G = limt→∞ Gt. Define
f : G → G by induction on t. Let f ¹ G0 = 1G0 . For a fixed t ≥ 0,
assume that f is defined on Gt. Suppose that v ∈ V (Gt+1)\V (Gt) folds
onto u in V (Gt). Define f(v) = f(u), which is well-defined by inductive
hypothesis.

Note that f(G) = V (G0) = V (H). The proof of this fact follows by
induction on t and the definition of f. Hence, f 2 = f and f is a retract.
As H 4 G, it remains only to prove that f is an endomorphism. For
this, fix xy ∈ E(G), and let m = max(age(x), age(y)). We use induction
on m to show that f(x)f(y) ∈ E(G). If m = 0, then f(x)f(y) = xy,
and so this case follows immediately. Assume that f(x)f(y) ∈ E(G) if
m = t ≥ 0. Suppose now that m = t+1. Without loss of generality, let
age(x) = t + 1. Then age(y) ≤ t and x is the unique element of the set
V (Gt+1)\V (Gt). By the definition of f, we have that f(x)y ∈ E(G).
Since max(age(f(x)), age(y)) ≤ t, by induction hypothesis, we have
that f(x)f(y) = f 2(x)f(y) ∈ E(G). ¤

We will need the following theorem from [7] which characterizes the
copying graphs.

Theorem 4. If G is a connected locally e.c. graph such that H ¹ G,
then G ∼= RH .

We may define RH in the case when H is countably infinite in a
similar fashion to the case for H finite. The main difference is that for
H infinite, the vertex xy,S introduced at time t > 0 may be joined to
an infinite set S of vertices with age(S) < t. If H is locally finite (that
is, the degrees of all vertices in H are finite), then xy,S is joined to an
S which must be finite. The following result relates foldings of locally
finite graphs and folding endomorphisms of RH .

Corollary 5. (1) If H is a connected graph such that R0
∼= H,

then there is f ∈ FEnd(RH) with f(RH) = V (R0).
(2) If H ¹ G and G is connected and locally finite, then there is

α ∈ FEnd(RH) with RH ¹ α(RH) ∼= G.

Proof. Item (1) follows by Lemma 3, since R0 ¹ RH . For (2), we have
that H ¹ G ¹ RG. We prove that H ¹ RG. As RG is connected and
locally e.c., the result will follow by item (1) and Theorem 4. The
result is immediate if G is finite, so we assume that G is infinite.

Suppose that C0 = (Ht : t ∈ N) is a countable sequence of finite
graphs so that H0

∼= H, Ht 41 Ht+1 for all t ∈ N, and G = limt→∞ Ht.
Let D = (Gt : t ∈ N) be a countable sequence of countable graphs so
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that G0
∼= G,Gt 41 Gt+1 for all t ∈ N, and let RG = limt→∞ Gt. To

prove that H ¹ RG, we must construct a chain C = (Jt : t ∈ N) with
J0
∼= H, Jt ¹ Jt+1 for all t ∈ N, and RG = limt→∞ Jt. The rough idea

of the proof is to mix the chains C0 and D to form C. We define the
graphs Jt inductively.

If x1 is the unique vertex of V (G1)\V (G), then NG1(x1) is a subset
NG(y), for some vertex y in G. As G is locally finite, NG(x1) is finite
and so is contained in Hi1 for some i1 ∈ N. For s ∈ N define

J1
s =

{
Hs if s ≤ i1
G1 ¹ (V (Hs) ∪ {x1}) else.

Let C1 be the chain (J1
s : s ∈ N). Note that G1 = limt→∞ J1

s , J1
s ¹ J1

s+1

for all s ∈ N, and H ¹ G1.
Proceeding inductively, we perform a similar construction with the

unique vertex xt+1 of V (Gt+1)\V (Gt). Let it+1 = it+1+age(NG(xt+1)).
Then the finite set NGt+1(xt+1) is contained in Git+1 .

For s ∈ N define

J t+1
s =

{
J t

s if s ≤ it+1

Gt+1 ¹ (V (J t
s) ∪ {xt+1}) else.

Let Ct+1 be the chain (J t+1
s : s ∈ N). Note that Gt+1 = limt→∞ J t+1

s ,
J t+1

s ¹ J t+1
s+1 for all s ∈ N, and H ¹ Gt+1. Further, J t

it ¹ J t+1
it+1

, by the
definition of it+1.

Define C = (Jt : t ∈ N) by

Jt =

{
J t

it if t > 0
H else.

By construction, Jt ¹ Jt+1 for all t ∈ N, and RG = limt→∞ Jt. ¤
Corollary 5 (2) implies that FEnd(RH) is infinite (since there are in-

finitely many non-isomorphic locally finite connected G so that H ¹ G).
This is in contrast to the case when H is a stiff-core: FEnd(H) has only
a single element.

An order P embeds in an order Q if P is isomorphic to an induced
suborder of Q. Bonato [3] proved that (EEnd(R),≤) embeds all count-
able orders. We now prove that for all finite graphs H, (EEnd(RH),≤)
is embeds all countable orders. For this, we consider the approach of
[11], exploiting the ideals of End(RH). An ideal of a semigroup S is a
nonempty subset which is closed under multiplication on either side by
elements of S. If a ∈ S, then the principal ideal of S generated by a is
the smallest ideal (with respect to the inclusion order of ideals) which
contains a. We begin with a simple but useful lemma. We use the no-
tation Je for the principal ideal of End(RH) generated by the retract
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e. For retracts e1, e2, we write Je1 ≤ Je2 if there are f, g ∈ End(RH)
such that e1 = fe2g. If f : G → H is a vertex mapping and S ⊆ V (G),
then we write f ¹ S for the restriction of f to S.

Lemma 6. Let G1, G2 ≤ RH so that H ¹ G1, G2. For i = 1, 2, let
ei : RH → Gi be a folding endomorphism. If Je1 ≤ Je2 , then G1 ≤ G2.

Proof. By hypothesis, there are f, g ∈ End(RH) such that e1 = fe2g.
Then

fe2g ¹ V (G1) = e1 ¹ V (G1) = 1V (G1),

which implies that e2g ¹ V (G1) is an injective homomorphism. If u, v ∈
V (G1) are not joined, then e2g(u) and e2g(v) are not joined. Hence,
e2g ¹ V (G1) : G1 → G2 is an embedding. ¤

We write 2N for the set of all subsets of the natural numbers. For a
graph G, χ(G) denotes the chromatic number of G.

Theorem 7. If H is a finite connected stiff graph, then there exists
a set I of principal ideals of End(RH) such that the inclusion order
(I,⊆) is isomorphic to 2N.

Proof. Fix r a vertex of H of maximum degree 4. As H is stiff, 4 > 1.
We will refer to r as the root. Define a graph G as follows. Join to r an
infinite one-way ray, whose vertices are indexed by N (note that r 6= n,
for all n ∈ N). To each vertex n ∈ N, join an endvertex n′.

Fix X ⊆ N. Define GX as the subgraph of G induced by the set

V (G)\{n′ : n /∈ X}.
In other words, delete all vertices n′ from G with n not in X. In par-
ticular, GN = G. Observe that GX is locally finite for all choices of
X.

Claim 1: For all X ⊆ N, H ¹ GX ¹ G, and H ¹ G.

We prove that H ¹ GX ; the proof that GX ¹ G is similar and so is
omitted. Define G0 = H. For t ≥ 1, define Gt to be the subgraph of
GX induced by

V (H) ∪ {0, . . . , t− 1} ∪ {i′ : i ∈ X, 0 ≤ i ≤ t− 1}.
Note that if i ∈ X, then i′ folds to i− 1 (with 0′ folding to r). Hence,
for all t ∈ N, Gt ¹ Gt+1. As GX = limt→∞ Gt, we have that GX ¹ G.
That H ¹ G by a similar argument.

It is straightforward to see that GX → H. Thus, GX embeds in
RH by Theorem 1. As G is connected and locally finite, by Claim 1
and Corollary 5, there is a folding endomorphism f ∈ FEnd(RH) with
image G. By Claim 1 and Lemma 3, there is a folding endomorphism
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fX of G onto GX . More explicitly, define the folding endomorphism
fX : G → G by

fX(x) =





n− 1 x = n′, n > 0, n /∈ X
r x = 0′, 0 /∈ X
x else.

Claim 2: For X,Y ⊆ N, GX ≤ GY if and only if X ⊆ Y.

We prove only the forward direction, as the reverse direction is
straightforward. Suppose that g : GX → GY is an embedding. Let
HZ be the copy of H in GZ , where Z is X or Y. We first show that
g(HX) = HY. Consider first the case when H is K2 with vertices u and
r. Then u is the unique vertex of HX and HY that is degree 1 and joined
to a vertex of degree 2. Hence, this case follows. Now consider the case
when H has 3 or more vertices. If g(HX) contains some of the vertices
n and n′, then H contains some endvertices. Since |V (H)| ≥ 3, these
endvertices may be folded to vertices of H, which contradicts that H
is a stiff.

Let rX be the root of GX and rY the root of GY . If H is K2, then
by the above discussion, g(rX) = rY . Assume that |V (H)| ≥ 3. Hence,
degGX

(rZ) = 4+ 1, and degGZ
(v) ≤ 4 for all v in V (HZ), where Z is

X or Y. As g(HX) = HY , we have that g(rX) = rY . It is straightforward
to see now that, by induction, g fixes vertices n and n′ for all n ∈ N.
If n ∈ X then n′ ∈ V (GX), which implies that g(n′) = n′ ∈ V (GY ).
Hence, n ∈ Y , and the proof of Claim 2 follows.

The proof of the theorem now follows if we prove that JfXf ≤ JfY f

if and only if X ⊆ Y. By Lemma 6 if JfXf ≤ JfY f , then GX ≤ GY . By
Claim 2, X ⊆ Y.

Conversely, suppose that X ⊆ Y. We claim that fX = fXfY . If
u ∈ V (H), then fXfY (u) = u = fX(u). Suppose u = n, or u = n′,
where n ∈ Y. Then fXfY (u) = fX(u). Now suppose that u = n′ with
n /∈ Y. If n > 0, then fXfY (n′) = n − 1 = fX(n′). If n = 0, then
fXfY (n′) = r = fX(n′).

Note that ffY = fY since fY (V (G)) ⊆ V (G) and f ¹ V (G) = 1V (G).
Therefore, fXf = fXfY f = (fXf)(fY f), which implies that JfXf ≤
JfY f . ¤ ¤

Theorem 7 supplies the following corollary.

Corollary 8. Suppose that the graph H is finite, connected, and stiff.
Then the following hold.

(1) End(RH) is not simple.
(2) The natural order (EEnd(RH),≤) embeds all countable orders.
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Proof. Item (1) follows immediately from Theorem 7. For item (2),
using the notation of the proof of Theorem 7, we observe that fX =
fXfY . We need only show that fX = fY fX . To see this, fix x ∈ V (G).
As X ⊆ Y, if x is fixed by fX , then x is fixed by fY . Hence, we need
only consider the case when x /∈ X. Suppose x = n′, n > 0. Then

fY fX(n′) = fY (n− 1) = n− 1 = fX(n′).

If x = 0′, then

fY fX(0′) = fY (r) = r = fX(0′).

Hence, X ⊆ Y if and only if fX ≤ fY in (EEnd(RH),≤).
Therefore, the inclusion order (2N,⊆) embeds in (EEnd(RH),≤). As

(2N,⊆) embeds all countable orders, the proof follows. ¤
We now prove that the monoid End(RH) is universal, in that it

embeds all countable monoids. Given a finite graph H, form a graph
H ′
∞ as follows. Let the vertices of H be labelled {x0 : x ∈ V (H)}. Let

V (H ′
∞) = {xi : i ∈ N} and x ∈ V (H)}, where the xi are all distinct

vertices, and xi 6= yj for distinct x, y ∈ V (H). Define

E(H ′
∞) = {xiyj : xy ∈ E(H)}.

In other words, form H ′
∞ by adding, for each vertex x, infinitely many

vertices xi which have the same neighbourhood in H ′
∞ that x does

(that is, H ′
∞ is the lexicographic product of H with Kℵ0). Although we

required that H be finite in the definition of RH , we may also consider
H countably infinite. One difference in the construction is that at each
time-step Rt, a countably infinite graph results. For the universality of
End(RH), we need the following result proven in [6].

Theorem 9. For a finite graph H, RH
∼= RH′∞.

If X is a set, define the transformation monoid on X, written T (X),
to be the set of functions f : X → X, with operation equalling compo-
sition. By an analogue of Cayley’s theorem for monoids, each monoid
of cardinality |X| embeds in T (X).

Theorem 10. For a finite graph H, the monoid T (X) embeds in End(RH),
where X is a countably infinite set. In particular, each countable
monoid embeds in End(RH).

Proof. By Theorem 9, it is sufficient to prove the result for H = H ′
∞.

We first observe that T (X) embeds in End(H). To see this, fix x = x0

in H, and identify X with {xi : i ∈ N}. Fix a mapping g : X → X.
Define G : H → H which acts as g on X, and fixes all other vertices.
As the xi have the same neighbours in RH , it follows that G is an



10 ANTHONY BONATO, PETER J. CAMERON, AND DEJAN DELIĆ

endomorphism of H. Define β : T (X) → End(H) by β(g) = G. It is
straightforward to check that β is an injective monoid homomorphism.

We next prove that there exists an injective monoid homomorphism
α : End(H) → End(RH). Once this is established, then αβ : T (X) →
End(RH) supplies an embedding of T (X) into End(RH).

Fix f an endomorphism of H, with H considered as the induced
subgraph R0 of RH . Let F0 = f. For t ≥ 0, assume that Ft is an
endomorphism of Rt, and Ft ¹ R0 = F0. Define Ft+1 by

Ft+1(z) =

{
Ft(z) if z ∈ V (Rt);
xFt(y),Ft(S) if z = xy,S, where y ∈ V (Rt), S ⊆ N(y).

It is straightforward to check (using the definition of Rt+1 and the fact
that Ft ∈ End(Rt)) that Ft+1 is an endomorphism of Rt+1. Note that
Ft+1 ¹ Rt = Ft.

The map F =
⋃

t∈N Ft is an endomorphism of RH . Hence, the map-
ping α : End(H) → End(RH) defined by α(f) = F is well-defined. It
is straightforward to see that α is injective, and that α(1H) = 1RH

. Fix
f, g ∈ End(H) and z ∈ V (RH). We prove by induction on the age t of
z that

(1) α(fg)(z) = α(f)α(g)(z).

(1) will establish that α is an embedding of monoids, and is imme-
diate if t = 0. Fix t ≥ 0. Suppose that age(z) = t + 1 and so z is of the
form xy,S, where y ∈ V (Rt), S ⊆ N(y) ⊆ V (Rt). Then

α(fg)(z) = xα(fg)(y),α(fg)(S)

= xα(f)α(g)(y),α(f)α(g)(S)

= α(f)α(g)(z).

The second equality follows since the ages of y and S are strictly less
than t, and by induction hypothesis. ¤

3. Automorphisms of copying graphs

Henson [14] proved that Aut(R) embeds (that is, contains subgroups
isomorphic to) all countable groups. Our first result of this section
proves a similar result for Aut(RH). Given a set X, we use the notation
Sym(X) for the group of permutations of X. We have the following.

Theorem 11. The group Sym(X) embeds in Aut(RH), where X is
countably infinite. In particular, each countable group embeds in Aut(RH).

Proof. Define H ′
∞ as in the proof of Theorem 10, and so RH

∼= RH′∞
by Theorem 9. Therefore, by Cayley’s theorem, it is sufficient to prove
that Sym(X) embeds in Aut(RH′∞).
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To see this, observe first that Sym(X) embeds in Aut(H ′
∞). The

proof is similar to the one that T (X) embeds in End(H ′
∞) given in the

proof of Theorem 10. Using the technique of the proof of Theorem 10,
it follows that Aut(H ′

∞) embeds in Aut(RH′∞). Hence, Sym(X) embeds
in Aut(H ′

∞), as desired. ¤
The graph R is homogeneous, in the sense that any isomorphism be-

tween finite induced subgraphs of R extends to an automorphism of
R. Hence, R displays as much symmetry as possible. In particular, R
is vertex- and arc-transitive. The countable homogeneous graphs were
classified by Lachlan, Woodrow [15]. From that classification, we de-
duce that RH is homogeneous if and only if H is K1 (since RK1

∼= Kℵ0).
The graphs RH are not in general vertex-transitive.

Lemma 12. The graph RK3 is not vertex-transitive.

Proof. List the vertices of K3 at time t = 0 as a, b, c. Consider the vertex
x = xa,{b} added at t = 1. We claim that x is not in a K3 in RK3 . Hence,
RK3 is not vertex-transitive since there is no automorphism sending a
to x. We proceed by induction on t ≥ 1 to prove that x is not in a
K3 in Rt. This clearly holds for t = 1. Suppose it is true for a fixed
t ≥ 1, and consider Rt+1. For a contradiction, suppose that x is in
a K3 with vertices x, y, z. One of these vertices, say z, must have age
t + 1. Let z′ be the vertex z copied from at time t + 1. Note that
x, y ∈ N(z) ⊆ N(z′). Therefore, z′ 6= x, y. Then x, y, z′ forms a K3 in
Rt, which is a contradiction. ¤

With this result in mind, a natural question (if somewhat vague)
is how symmetric is RH? More precisely, which pairs of induced sub-
graphs of RH have the property that every isomorphism between them
extends to an automorphism of RH? We do not have a complete an-
swer to this question for RH , even if H ∼= K2. We do, however, have
the following result.

Let G and G′ be induced subgraphs of J. We say that G and G′

are simply reflective, written G ∼1 G′, if their vertex sets are of the
form Z ∪ {x} and Z ∪ {y} respectively, where x and y are non-joined
and their neighbour sets within Z are equal. Hence, J ¹ (Z ∪ {x, y})
folds onto both G and G′. We say that G and G′ are reflective, written
G ∼ G′ if G = G′, or there are induced subgraphs G0,G1, . . . , Gr of J
with G0 = G and Gr = G′, such that Gi−1 ∼1 Gi for all i = 1, . . . , r.

Theorem 13. Let H be a finite, connected, stiff graph, and let G
and G′ be finite induced subgraphs of H such that H ¹ G, G′ and
G ∼ G′ in RH . Then any isomorphism between G and G′ extends to
an automorphism or RH .
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Proof. We prove the theorem in the case when G ∼1 G′; the proof
when G ∼ G′ follows by induction. Let G = RH ¹ (V (G) ∪ V (G′)).
Then H ¹ G and G is connected, and so by Theorem 2, RH

∼= RG.
Moreover, G has an automorphism carrying G to G′, and this extends
to an automorphism of RG (using a similar technique as in the proof
of Theorem 10). ¤
Corollary 14. The graph RK2 is arc-transitive.

Proof. Consider two copies G and G′ of K2 in RK2 . The existence of
a path connecting G to G′ witnesses that G ∼ G′ in RK2 . Since K2 ¹
G,G′, the proof follows by Theorem 13. ¤

4. The folding order

We now investigate combinatorial properties of the folding order.
Let (G ¹) represent the folding order on the class of finite graphs. An
order (P,≤) is scattered if it does not embed the order-type of the
rational numbers. If x ∈ P, then we use the notation ↑ x for the set
{y ∈ P : x ≤ y}.
Theorem 15. (1) The minimal elements of (G, ¹) are the stiff

graphs. If G and H are non-isomorphic stiff graphs, then
(↑ G) ∩ (↑ H) = ∅.

(2) There is an order-homomorphism from (G, ¹) into (N,≤). In
particular, (G, ¹) is scattered.

(3) The order (G, ¹) has infinite height and width.

Proof. The proof of the first statement of (1) follows from the def-
initions. Suppose that some J ∈↑ (G∩ ↑ H) . Then J folds to the
stiff induced subgraphs G and H, which contradicts that stiff-cores are
unique up to isomorphism.

For (2), first note that each element of (G, ¹) has finite height. For
t ∈ N, define At to be the elements of (G, ¹) which are of height t.
Define f : (G,¹) → (N,≤) by f(At) = t. It is straightforward to see
that f is an order-homomorphism.

For (3), note that K2 ¹ P3 ¹ P4 ¹ . . . implies that (G,¹) has infinite
height. Since the infinite set of all stiff graphs forms an antichain, the
order (G, ¹) has infinite width. ¤

By Theorem 15 (2), (G, ¹) does not embed every countable order.
However, it has a relatively rich structure as demonstrated in the fol-
lowing theorem. We write degG(x) for the degree of a vertex x in G.

Theorem 16. The folding order (G, ¹) embeds all finite orders.
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Proof. We use the well-known fact that each finite order (P,≤) embeds
in a hypercube 2n, for some positive integer n. It is therefore sufficient
to prove that for all positive n, 2n embeds in the folding order (G, ¹).

Fix n ≥ 3 a positive integer. Label the vertices of the complete
graph Kn as {0, 1, . . . , n− 1}. Form the graph G by adjoining 2i many
disjoint endvertices to the vertex i of Kn, where 1 ≤ i ≤ n − 1. Note
that the degree sequence of G consists of a constant sequence of 1’s of
length 2n − 2 followed by the sequence

(n− 1, n + 1, . . . , n− 1 + 2n−1).

In particular, each vertex i in G that is not an endvertex has degree
n − 1 ≥ 2 or higher, and any two vertices i, j from G have degrees
differing by at least 2. In addition, Kn ¹ G by folding all the endvertices
joined to i onto j, where i 6= j.

We identify the hypercube 2n with the set of all binary n-sequences
ordered coordinatewise. If σ, τ ∈ 2n, then we write σ ≤ τ for this
ordering. For a binary n-sequence σ, let σ(i) be the ith position of σ,
and let s(σ) =

∑n
i=1 σ(i).

Define a graph Gσ containing G as an induced subgraph. The vertex
i from G we label iσ in Gσ. To each vertex iσ, add σ(i) many disjoint
endvertices. Then G ¹ Gσ. The degree sequence of Gσ consists of
(2n − 2) + s(σ) many 1’s, followed by

λ = (n− 1 + σ(1), n + 1 + σ(2), . . . , n− 1 + 2n−1 + σ(n)).

Note that each two distinct entries of λ differ by 1 or more.
Let G(n) be the subordering of (G,¹) induced by the set {Gσ : σ ∈ 2n}.

Define ϕ : 2n → G(n) by ϕ(σ) = Gσ. We claim that ϕ is an order-
isomorphism. The map ϕ is clearly surjective. It is injective, since
distinct sequences in 2n give rise to graphs with distinct degree se-
quences in G(n).

Suppose that σ ≤ τ in 2n. We embed Gσ in Gτ by identifying each
iσ with iτ , and mapping corresponding sets of endvertices. Hence,
Gσ ≤ Gτ , and since endvertices joined to iτ fold to jτ with i 6= j, we
have that Gσ ¹ Gτ .

Now suppose that Gσ ¹ Gτ . Hence, Gσ ≤ Gτ via an embedding f.
Since

degGσ
(iσ) =

{
n− 1 + 2i + σ(i) if i > 0
n− 1 + σ(0) else,

it follows that f(iσ) is not an endvertex of Gτ . Thus, for all i, f(iσ) = jτ

for some j. Define

α : {0, 1, . . . n− 1} → {0, 1, . . . n− 1}
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by α(i) = j. The mapping α is injective as f is an embedding, and
so is a bijection. For all x, y ∈ {0, 1} and all 0 ≤ i ≤ n − 1, we
have that n − 1 + x < n − 1 + 2i + y. Further, for all x, y ∈ {0, 1},
n − 1 + 2i + x < n − 1 + 2j + y if and only if i < j. Therefore, for
all 0 ≤ i ≤ n − 1, α(i) ≥ i, and so α is the identity mapping on
{0, 1, . . . n − 1}. In particular, for all i, f(iσ) = iτ . Suppose now that
for some i ∈ {0, 1, . . . n− 1}, τ(i) < σ(i). But then

degGτ
(f(iσ)) = degGτ

(iτ ) < degGσ
(iσ),

which is a contradiction. Hence, σ ≤ τ . ¤
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