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Abstract. The Firefighter Problem is a simplified model for the spread of a fire (or disease
or computer virus) in a network. A fire breaks out at a vertex in a connected graph, and
spreads to each of its unprotected neighbours over discrete time-steps. A firefighter protects
one vertex in each round which is not yet burned. While maximizing the number of saved
vertices usually requires a strategy on the part of the firefighter, the fire itself spreads without
any strategy. We consider a variant of the problem where the fire is constrained by spreading
to a fixed number of vertices in each round. In the two-player game of k-Firefighter, for a
fixed positive integer k, the fire chooses to burn at most k unprotected neighbours in a given
round. The k-surviving rate of a graph G is defined as the expected percentage of vertices
that can be saved in k-Firefighter when a fire breaks out at a random vertex of G.

We supply bounds on the k-surviving rate, and determine its value for families of graphs
including wheels and prisms. We show using spectral techniques that random d regular
graphs have k-surviving rate at most (1+O(d−1/2))

k+1 . We consider the limiting surviving rate
for countably infinite graphs. In particular, we show that the limiting surviving rate of the
infinite random graph can be any real number in [1/(k + 1), 1].

1. Introduction

The Firefighter Problem was introduced by Hartnell [15], and is a simplified deterministic
model of the spread of fire, diseases, and computer viruses in graphs. All graphs we consider
are connected, finite (except in Section 4), simple, and undirected. In Firefighter, vertices are
either burning or not. There is one firefighter who is attempting to control the fire. Once a
vertex is occupied by the firefighter, it can never burn in any subsequent round, and is called
protected. The fire begins at some vertex in the first round, and the firefighter chooses some
vertex to save. The firefighter can visit any vertex in a given round (for example, he can jump
between two non-joined vertices from one round to the next), but cannot protect a vertex
on fire. The fire acts without intelligence, and spreads to all non-protected neighbours; such
vertices are called burned. Once a vertex has been protected, its state cannot change; that
is, it can never be on fire. The process stops when the fire can no longer spread. A vertex
is saved if it is not burned at the end of the process.

Firefighter has been a considered in several familiar graph classes, such as finite and infinite
grids [7, 9], cubic graphs [18], and trees [8, 16]. The problem has been studied from both
structural and algorithm viewpoints; see the survey [12] for additional background.

We consider a variant of firefighting, called k-Firefighter for a fixed positive integer k, where
in each round, the fire chooses at most k neighbouring vertices to burn. In k-Firefighter,
a move for the fire is to spread to at most k unprotected vertices. The reader should note
that this results in a two-player game, where an optimal strategy for the fire aims to burn as
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many vertices as possible, and an optimal strategy for the firefighter aims to save as many
vertices as possible. By keeping a score between the vertices burned and the vertices saved
(on a finite graph), k-Firefighter can also be interpreted as a combinatorial game. We note
that the game of k-Firefighter was first suggested as a direction for future investigation in
[9].

The game of k-Firefighter considers the spread of fire with limited resources. Rather than
spreading to every neighbour, the fire is constrained to spread to a fixed number of them.
Although this may be appear less natural than the applications of the original Firefighter
problem, it has potential applications to the spread of gossip, news, or information in a social
network: agents in such networks have finite time and resources, and spread the gossip to a
finite selection of friends or followers. For the rest of the paper, k is a fixed positive integer.

We note that unlike Firefighter, where the fire has no strategy, the choice of strategy for
the fire is important in k-Firefighter. Consider the graph G in Figure 1, where m ≥ 3.
Suppose the fire breaks out at x and the firefighter protects a. In Firefighter, in the second
round the fire spreads to both y and b. The firefighter can then only save two vertices of
G. However, in 1-Firefighter if the fire chooses to burns y in the second round, then the
firefighter can save all of Km by protecting b. If the fire burns b rather than y in the second
round, then the firefighter can save dm

2
e vertices in Km. We note, however, that in some

K

y

m

x
a

b

Figure 1. The graph G.

graphs (for example, in a clique or a path), the outcome of the game does not depend on
how the fire spreads.

The surviving rate ρ(G) of a graph G was introduced by Cai and Wang [7] and defined as
the expected proportion of vertices that can be saved when a fire breaks out at a vertex of G
chosen uniformly at random. Exact values for the surviving rate have been determined for
paths and cycles [7] and bounds have been determined for trees [7, 8], planar graphs [7], K4-
free minor graphs [11], and outerplanar graphs [8]. For sparse graphs, surviving rates should
be relatively large. Finbow, Wang, and Wang [11] showed that any graph G with n ≥ 2
vertices and at most

(
4
3
− ε

)
n edges has the property that ρ(G) ≥ 6

5
ε, where 0 < ε < 5

24
is

fixed. In [19] the third author of this paper improved this to show that for graphs with size
at most

(
15
11
− ε

)
n has surviving rate ρ(G) ≥ 1

60
ε, where 0 < ε < 1

2
is fixed. Moreover, a

construction of a random graph has been proposed to show that no further improvement is
possible; that is, 15

11
is the threshold (see also [20] for a natural extension of this threshold).

We now define the surviving rate of graphs in the game of k-Firefighter. For a vertex v in
G, define snk(G, v) to be the number of vertices that can be saved if a fire breaks out at v.
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For a finite graph G, define its k-surviving rate to be

ρ(G, k) =
1

n2

∑

u∈V (G)

snk(G, u).

Note that snk(G, u)/n is the proportion of vertices that can be saved when a fire breaks
out at u. Thus, ρ(G, k) is the expected percentage of vertices that can be saved when a fire
breaks out at a random vertex of G (uniform distribution is used for the initial placement).
For example, for a clique

ρ(Kn, k) =
d(n− 1)/(k + 1)e

n
≥ 1

k + 1

(
1− 1

n

)
.

For a path,

ρ(Pn, k) = ρ(Pn) =
2

n
· n− 1

n
+

n− 2

n
· n− 2

n
= 1− 2

n
+

2

n2
.

(To derive these bounds, note that in a clique, the firefighter can save one vertex in each step
of the game and then the fire spreads to some k vertices, no matter where the fire breaks
out. After d(n− 1)/(k +1)e steps the process is finished. For a path, the firefighter can save
n− 1 vertices if the fire breaks out at the end-vertices, and n− 2 vertices otherwise.)

We focus on the computing the surviving rate for k-Firefighter in various contexts. In
Section 2, we supply an upper bound in Theorem 1 for ρ(G, k), where G is a connected
graph. In Theorems 2 and 3, we give the exact values of the k-surviving rate for wheels
and certain prisms, respectively. We show that random regular graphs have low k-surviving
rates for all values of k. It is shown in Theorem 4 that asymptotically almost surely random
regular graphs have k-surviving rate at most

1 + 2d−1/2(
√

k + O(1))

k + 1
=

(1 + O(d−1/2))

k + 1
.

where d is the degree of regularity. This tends to 1
k+1

as d tends to infinity, which is the
smallest possible surviving rate in k-Firefighter (see (2.1)). We finish with Section 4, where
we introduce the k-surviving rate for infinite graphs as the limit of the k-surviving rate
of a chain of finite connected graphs. The definition in the infinite case allows (in certain
cases) for different surviving rates. For some graphs, such as cliques or paths, all chains
of connected graphs give the same limiting k-surviving rate. We prove in Theorem 9 the
surprising result that the k-surviving rate of the infinite random graph can, in fact, be any
real number in [1/(k + 1), 1].

We emphasize that while the choice by the fire to spread to k neighbours may greatly
influence the outcome of the game (as the example in Figure 1 illustrates), in many cases, it
does not. Indeed, we use the “intelligence” of the fire in our proofs below explicitly only in
Lemma 10.

2. Bounds and graph families

As adding edges does not increase the k-surviving rate, it follows that cliques have the
smallest surviving rates. Hence, for a graph with n vertices we have that

(2.1) ρ(G, k) ≥ d(n− 1)/(k + 1)e
n

≥ 1

k + 1

(
1− 1

n

)
.
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We now derive an upper bound for the k-surviving rate of a connected graph as a function
of k and its order.

Theorem 1. For a connected graph G on n vertices,

ρ(G, k) ≤ 1− 2

n
+

1

n2
+

1

n2

⌈n− 1

k + 1

⌉
.(2.2)

≤ 1− 1

n

(
2− 1

k + 1

)
+ O

( 1

n2

)
.

Note that the bound in (2.2) is sharp as equality holds for a star on n vertices.

Proof. Since ρ(G, k) ≤ ρ(G − e, k) for e ∈ E(G), we may assume without loss of generality
that G is a tree. For a positive integer i, define [i] = {1, 2, . . . , i}. Let (d1, d2, . . . , dn) be
the degree sequence for T, where di ≤ di+1 for i ∈ [n− 1]. Let vi be the vertex with degree
di for i ∈ [n]. If a fire starts at vi, then the firefighter can save at most one of every k + 1
neighbours of vi, thereby saving at most d di

k+1
e neighbours of vi. Thus, the fire burns at

least 1+
(
di−d di

k+1
e
)

vertices, which gives the following bound on the proportion of vertices

burned:

1− ρ(T, k) ≥ 1

n2

n∑
i=1

(
1 + di −

⌈ di

k + 1

⌉)
.

As
∑n

i=1 di = 2(n− 1), we have that

ρ(T, k) ≤ 1− 1

n2

(
3n− 2−

n∑
i=1

⌈ di

k + 1

⌉)

= 1− 3

n
+

2

n2
+

1

n2

n∑
i=1

⌈ di

k + 1

⌉

We leave it as an exercise to show that a degree sequence of trees which maximizes

n∑
i=1

⌈ di

k + 1

⌉
.

is (1, 1, 1, . . . , 1, n− 1). Therefore, we have that

ρ(T, k) ≤ 1− 3

n
+

2

n2
+

1

n2

(
1 + 1 + 1 + · · ·+ 1 +

⌈n− 1

k + 1

⌉)

= 1− 3

n
+

2

n2
+

n− 1

n2
+

1

n2

⌈n− 1

k + 1

⌉

= 1− 2

n
+

1

n2
+

1

n2

⌈n− 1

k + 1

⌉
. ¤

To further illustrate the parameter ρ(G, k), we now consider exact k-surviving rates for
some families of graphs. Let Wn denote the wheel graph, consisting of an (n− 1)-cycle with
all vertices of the cycle joined to a centre vertex.
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Theorem 2.

ρ(Wn, k) =





1/2 if k = 1 and n = 4

1− 4
n

+ 3
n2 +

dn−1
2
e

n2 if k = 1 and n ≥ 5

1/4 if k ≥ 2 and n = 4

2/5 if k = 2 and n = 5

9/25 if k > 2 and n = 5

1− 5
n

+ 4
n2 +

dn−1
k+1

e
n2 if k ≥ 2 and n ≥ 6

Proof. The cases for n = 4, 5 are straightforward and so omitted. Assume that n ≥ 6. If the
fire breaks out at one of the n−1 vertices of degree three, then the firefighter should protect
the centre vertex. What remains for the fire is the cycle Cn−1. If k = 1, then the firefighter
can save all but three vertices on Cn−1. If k = 2, then the firefighter can save all but four
vertices on Cn−1. If the fire breaks out at the centre vertex, the firefighter can save exactly
one of every k + 1 neighbours of the centre vertex, saving a total of dn−1

k+1
e vertices.

Thus, we have that

ρ(Wn, 1) =
1

n2

(
(n− 3)(n− 1) +

⌈n− 1

k + 1

⌉)
= 1− 4

n
+

3

n2
+
dn−1

2
e

n2

ρ(Wn, k) =
1

n2

(
(n− 4)(n− 1) +

⌈n− 1

k + 1

⌉)
= 1− 5

n
+

4

n2
+
dn−1

k+1
e

n2

for k ≥ 2. ¤

The Cartesian product of G and H, written G¤H, has vertex set V (G)× V (H). Vertices
(a, b) and (c, d) are joined if a = c and bd ∈ E(H), or ab ∈ E(G) and b = d. We consider
prisms which are Cartesian products where one of the factors is K2.

Theorem 3. For k ≥ 2, we have the following.
(1) ρ(Pn¤K2, 1) = 1− 2

n
+ 3

n2 for n ≥ 4;

(2) ρ(Pn¤K2, k) = 1− 3
n

+ 7
n2 for n ≥ 6;

(3) ρ(Cn¤K2, 1) = 1− 2
n

for n ≥ 4;

(4) ρ(Cn¤K2, k) = 1− 3
n

for n ≥ 5.

Proof. The cases for n = 4, 5 are trivial and so omitted; assume without loss of generality
that n ≥ 6. In addition, the cases when k = 1 (that is, items (1) and (3)) are proved in a
manner analogous to the cases when k ≥ 2, and so are omitted.

First, consider Pn¤K2. Due to symmetry, there are four possible cases to consider, de-
pending on where the fire breaks out initially. These are described by Figure 3 where the
vertices burned are denoted by a black square vertex and the vertices protected are denoted
by a white round vertex (the number next to a vertex indicates the round at which the vertex
was protected or burned). The initial burned vertex is denoted by the large square.

Figure 2 supplies an optimal strategy for the firefighter. Counting the number of vertices
saved in each of the four cases, as well as the number of times each case can occur, we have

ρ(Pn¤K2, k) =
1

4n2

(
4(2n− 2) + 4(2n− 4) + 4(2n− 5) + (2n− 12)(2n− 6)

)

= 1− 3

n
+

7

n2
.
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Figure 2. The four cases for Pn¤K2, where k ≥ 2.

Consider Cn¤K2 for n ≥ 5 and k ≥ 2. Due to symmetry, there is only one possible
situation to consider: Case 4. Then 2n− 6 vertices are saved, supplying that

ρ(Cn¤K2, k) =
1

4n2

(
(2n)(2n− 6)

)
= 1− 3

n
. ¤

3. Random d regular graphs are flammable

We now consider k-Firefighter played on random d-regular graphs with uniform probability
distribution. The probability space is denoted Gn,d. An event holds asymptotically almost
surely or a.a.s. in Gn,d if it holds with probability tending to one for n → ∞ with d ≥ 2
fixed, with the proviso that n even if d is odd. As we will see in Theorem 4, random regular
graphs are flammable, in the sense that the fire can a.a.s. burn a sizeable proportion of the
graph.

Instead of working directly in Gn,d, we use the pairing model of random regular graphs,
first introduced by Bollobás [4]. Suppose that dn is even, as in the case of random regular
graphs, and consider dn points partitioned into n labeled buckets v1, v2, . . . , vn of d points
each. A pairing of these points is a perfect matching into dn/2 pairs. Given a pairing P ,
we may construct a multigraph G(P ), with loops allowed, as follows: the vertices are the
buckets v1, v2, . . . , vn, and a pair {x, y} in P corresponds to an edge vivj in G(P ) if x and y
are contained in the buckets vi and vj, respectively. It is an easy fact that the probability of a
random pairing corresponding to a given simple graph G is independent of the graph, hence
the restriction of the probability space of random pairings to simple graphs is precisely Gn,d.
Moreover, it is well known that a random pairing generates a simple graph with probability
asymptotic to e(1−d2)/4 depending on d but not on n. Therefore, any event holding a.a.s.
over the probability space of random pairings also holds a.a.s. over the corresponding space
Gn,d. For this reason, asymptotic results over random pairings suffice for our purposes. One
of the advantages of using this model is that the pairs may be chosen sequentially so that
the next pair is chosen uniformly at random over the remaining (unchosen) points. For more
information on this random graph model, see [21].

The adjacency matrix A = A(G) of a given d-regular graph G with n vertices has n real
eigenvalues which we denote by d = λ1 ≥ λ2 ≥ · · · ≥ λn. Define

λ = λ(G) = max(|λ2|, |λn|).
Hence, λ is the largest absolute value of an eigenvalue other than d (for more details, see [3,
17]).

We now present an asymptotic upper bound for the k-surviving rate of random d-regular
graphs for all values of d and k.
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Theorem 4. Let d ≥ 3, k ≥ 1, and fix ε > 0. Let λ = 2
√

d− 1 + ε. Then, for G ∈ Gn,d we
obtain that a.a.s.

ρ(G, k) ≤ (1 + o(1))

k + 1

(
1 +

λ

d

(√
k +

d

d− λ

))
=

(1 + O(d−1/2))

k + 1
.

By (2.1), we have that ρ(G, k) → 1
k+1

as d → ∞. Hence, for large values of d, a.a.s.
random d-regular graphs have, in a certain sense, the smallest possible k-surviving rate. A
stronger (but numerical) result is presented in the next subsection.

Before we prove Theorem 4 we need a few lemmas, the first of which is related to expansion
properties of random regular graphs. The value of λ for random d-regular graphs has been
studied extensively. A major result due to Friedman [14] is the following.

Lemma 5 ([14]). For every fixed ε > 0 and for G ∈ Gn,d, a.a.s.

λ(G) ≤ 2
√

d− 1 + ε.

The number of edges |E(S, T )| between sets S and T is expected to be close to the expected
number of edges between S and T in a random graph of edge density d/n, namely d|S||T |/n.
A small λ (or large spectral gap) implies that this deviation is small. The following useful
bound is essentially proved in [1, 3].

Lemma 6 (Expander Mixing Lemma). Let G be a d-regular graph with n vertices and set
λ = λ(G). Then for all S, T ⊆ V we have that∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T | .

Note that S ∩ T does not have to be empty; in general, |E(S, T )| is defined to be the
number of edges between S \ T to T plus twice the number of edges that contain only
vertices of S∩T . For our purpose here it is better to apply a slightly stronger lower estimate
proved in [2, 3] for |E(S, V \ S)|:

(3.1) |E(S, V \ S)| ≥ (d− λ)|S||V \ S|
n

for all S ⊆ V .
The following lemma was essentially proved in [19], although we include a full proof here

for completeness. For d ≥ 3, a cycle is called short if it has length at most L = logd−1 logd−1 n.

Lemma 7. If d ≥ 3 and G ∈ Gn,d, then a.a.s. the number of vertices that belong to a short
cycle is at most log2 n.

Proof. Let u ∈ V (G) and let Ni(u) denote the set of vertices at distance at most i from u. A
balanced d-regular tree contains d vertices on the first level, d(d− 1) vertices on the second
level, and so on. Let fi denote the number of vertices in a balanced d-regular tree with i
levels; that is,

fi = 1 + d

i−1∑
j=0

(d− 1)j = 1 +
d((d− 1)i − 1)

d− 2
.

We will show that in the early stages of this process, the graphs grown from u tend to be
trees a.a.s.; hence, the number ni of elements in Ni(u) is equal to fi a.a.s. In other words, if
we expose the vertices at distance 1, 2, . . . , i from u step-by-step, then we have to avoid at
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step j edges that induce cycles. That is, we wish not to find edges between any two vertices
at distance j from u or edges that join any two vertices at distance j to a same vertex at
distance j + 1 from u. We will refer to edges of this form as special. Note that the expected
number of special edges at step i+1 is equal to O(n2

i /n) = O(f 2
i /n) = O((d−1)2i/n). There

are O(ni) edges created at this point; for a given edge the probability of being special is
O(ni/m). Therefore, the expected number of special edges found up to step i1 = dL/2e is
equal to

i1−1∑
j=0

O
(
(d− 1)2j/n

)
= O

(
(d− 1)2i1/n

)
= O

(
log n/n

)
.

(Recall that L = logd−1 logd−1 n.) Hence, the expected number of vertices that belong to a
cycle of length at most L is O(log n) and the assertion follows from Markov’s inequality. ¤

We now prove Theorem 4.

Proof of Theorem 4. Consider the vertex set U consisting of vertices from G that do not
belong to a short cycle of length at most L. By Lemma 7, since |U | ≥ n− log2 n a.a.s., we
have that a.a.s.

ρ(G, k) =
1

n2

∑

v∈V (G)

snk(G, v)

=
1

n2

∑

v/∈U

snk(G, v) +
1

n2

∑
v∈U

snk(G, v)

= o(1) +
1

n|U |
∑
v∈U

snk(G, v).

Therefore, it is enough to show that a.a.s. for all u ∈ U

snk(G, u) ≤ (1 + o(1))
n

k + 1

(
1 +

λ

d

(√
k +

d

d− λ

))
.

(Let us note that when d = 3 and u /∈ U belongs to the triangle, the firefighter can save
the neighbour of u that does not belong to the triangle in the first round, and then apply
a greedy strategy of protecting any vertex adjacent to the fire. This strategy saves at least
half of vertices, regardless of the value of k. For k = 1 it is, in fact, possible to save all
but the three vertices that belong to the triangle. Therefore, the desired property might not
hold for u /∈ U , but again, this is not causing any problems since a.a.s. almost all vertices
are in U .)

Let u ∈ U and let Bt, Ft denote the set of vertices burned or protected in round t,
respectively. We will examine three successive phases for the fire spreading from u. In the
first phase consisting of rounds up to some constant t0, the fire spreads to all non-protected
vertices adjacent to the fire but fewer than k new vertices catch fire in each round. We will
use the fact that G is locally a tree to bound t0. In the second phase defined as those rounds
up to a certain t1 = t1(n), the fire spreads to k neighbours, but there are still no short cycles.
The subgraph induced by Bt1 is a tree and there will be (1+o(1))kt1 burned vertices. In the
third stage after round t1, there are short cycles that clearly help the firefighter; however,
many vertices are already burned, which makes it impossible for the firefighter to save too
many vertices.
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In the first phase, in order to minimize |Bt| the firefighter should use a greedy strategy ;
that is, protect a vertex adjacent to the vertex on fire. On the other hand, if k ≥ d, then the
fire cannot use the whole power in this phase and can only spread to less than k vertices in
each round. However, this can occur only for a constant number of initial steps. Indeed, in
the first round the fire spreads to at least d− 1 vertices, then to at least

(
(d− 1)2 − 1

)
new

ones, and so on. In round t during this phase, there are at least

(
(d− 1)t − (d− 1)t−2 − (d− 1)t−3 − · · · − (d− 1)− 1

)

= (d− 1)t − (d− 1)t−1 − 1

d− 2
=

(d− 1)t−1(d2 − 3d + 1) + 1

d− 2

new vertices on fire. Therefore,

t0 ≤
⌈
logd−1

(
k(d− 2)− 1

d2 − 3d + 1

)
+ 1

⌉
,

so it is a constant that does not depend on n.
In the second phase, after round t0, the fire is free to spread to k new vertices in each

round. After t1 = b1
2
Lc = b1

2
logd−1 logd−1 nc rounds, there are

|Bt1| = O(kt0) + k(t1 − t0) = (1 + o(1))kt1

vertices on fire that form a tree.
We now consider the third stage after round t1. It is straightforward to see that the fire

will be spreading up to round T̂ when E(BT̂ , V \ BT̂ ) = E(BT̂ , FT̂ ); that is, there is no
vertex adjacent to the fire that is not protected. Moreover, if for every t0 < t ≤ T we
have that |E(Bt, V \ Bt)| ≥ |E(Bt, Ft)| + dk, the fire spreads with the full speed; that is,
|Bt+1| = |Bt| + k during this stage of the process. (Since there are at least dk edges from
burned to non-protected vertices, there must be at least k non-protected vertices adjacent to
the fire.) Hence, |Bt| = (1 + o(1))kt during this time period. Note that from (3.1) it follows
that for any round t

|E(Bt, V \Bt)| ≥ (d− λ)|Bt||V \Bt|
n

= (1 + o(1))
(d− λ)kt(n− kt)

n
.

Since FT can receive at most d|FT | = dT edges, T can be taken to be arbitrarily large as
long as T satisfies

(1 + o(1))
(d− λ)kT (n− kT )

n
≥ dT + dk = (1 + o(1))dT.

When T is maximized, T + 1 fails this test which implies that

1− k(T + 1)

n
≤ (1 + o(1))

(
d

d− λ

)
1

k

and so

(3.2) T ≥ (1 + o(1))
n

k

(
1−

(
d

d− λ

)
1

k

)
.
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A mildly stronger result can be obtained by estimating the number of edges between Bt and
Ft using Lemma 6, and inequality (3.2), rough lower bound for T .

|E(Bt, Ft)| ≤ d|Bt||Ft|
n

+ λ|Ft|
√
|Bt|
|Ft|

= (1 + o(1))

(
dkt2

n
+ λt

√
k

)
.

We therefore have milder condition for T

(d− λ)kT (n− kT )

n
≥ (1 + o(1))

(
dkT 2

n
+ λT

√
k

)
,

and so

1− (k + 1)T

n
≥ (1 + o(1))

λ

d

(
1 +

1√
k
− kT

n

)
.

Using (3.2), we get that T can be arbitrarily large, provided that T satisfies the following
inequality

1− (k + 1)T

n
≥ (1 + o(1))

λ

d

(
1√
k

+

(
d

d− λ

)
1

k

)
.

As before, when T is taken such that T + 1 fails this (slightly milder) test, we have that the
third phase lasts until time T and

T ≥ (1 + o(1))
n

k + 1

(
1− λ

d

(
1√
k

+

(
d

d− λ

)
1

k

))
.

Hence, the number of vertices saved snk(G, u) is at most

n− (1 + o(1))kT ≤ (1 + o(1))
n

k + 1

(
1 +

λ

d

(√
k +

d

d− λ

))
,

and the assertion follows from Lemma 5. ¤

We note that for the essential elements used in the proof of Theorem 4 are Lemmas 5, 7,
and (3.1). The proof will go through in the exact same fashion for a family of random graphs
(or a suitably defined family of expander graphs) satisfying these properties. Further, the
results of this section hold regardless of how the fire chooses which neighbours to spread.

3.1. Numerical upper bound. From Theorem 4 it follows that ρ(G, k) tends to 1
k+1

as
d → ∞. On the other hand, for a given value of d, one can find a better numerical upper
bound for ρ(G, k). At the end of the process in round t, there are |Bt| = kt + O(1) vertices
on fire, |Ft| = t protected vertices, and |Rt| = n− (k +1)t+O(1) “neutral” vertices that are
separated from the fire; that is, there are no edges between Bt and Rt.

Suppose now that for a given x ∈ [0, x0] (where 0 ≤ x0 ≤ 1 is a fixed constant) and
any y, z ∈ [0, 1], the expected number S(x, y, z) of partitions of the vertex set into three sets
B, F,R of kxn, xn, and (1−(k+1)x)n vertices in G ∈ Gn,d, respectively, with |E(B, F )| = yn,
|E(F, R)| = zn, and |E(B, R)| = 0 is o(n−3). Then, the expected number of configurations
with x ≤ x0 is o(1) and so a.a.s. no such partition exists by the first moment method. This
implies that a.a.s. the process can last up to round x0n; that is, a.a.s. ρ(G, k) < 1− kx0. To
find the optimal value of x0 we use the pairing model.
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For any x ∈ [0, 1], it follows that

S(x, y, z) =
1

M(dn)

(
n

kxn

)(
(1− kx)n

xn

)(
kxnd

yn

)(
xnd

yn

)
(yn)!

×
(

xnd− yn

zn

)(
(1− (k + 1)x)nd

zn

)
(zn)!

×M(kxnd− yn)M(xnd− yn− zn)M((1− (k + 1)x)nd− zn),

where M(i) is the number of perfect matchings on i vertices; that is,

M(i) =
i!

(i/2)!2i/2
.

To see this, we fix kxn vertices (kxnd points) to form set B (the term
(

n
kxn

)
), and xn

vertices (xnd points) to form set F (the term
(
(1−kx)n

xn

)
). Now, we fix yn points in B (the

term
(

kxnd
yn

)
) that correspond to yn edges that are incident to yn points in F (the term(

xnd
yn

)
). After fixing points in both B and F , we need to connect them in all possible ways

(the term (yn)!). Similarly, we generate all possibilities for edges from F to R (the term(
xnd−yn

zn

)(
(1−(k+1)x)nd

zn

)
(zn)!). Finally, we need to take a perfect matching of remaining points

in B (the term M(kxnd− yn)), F (the term M(xnd− yn− zn)), and R (the term M((1−
(k + 1)x)nd− zn)) to consider all possible configurations satisfying our assumption.

Define

g(x, y, z, k, d) =
(

kkx(d−1)x(k+1)x(d−1)dd/2(1−(k+1)x)(1−(k+1)x)(d−1)

yyzz(kxd−y)(kxd−y)/2(xd−y−z)(xd−y−z)/2((1−(k+1)x)d−z)(1−(k+1)x)d−z)/2

)n

.

After simplification, using Stirling’s formula (that is, n! ∼ √
2πn(n/e)n), and taking the

exponential part we obtain that

S(x, y, z) ≤ eo(n)g(x, y, z, k, d)

= ef(x,y,z,k,d)n+o(n) ,

where

f(x, y, z, k, d) = kx(d− 1) ln k + (k + 1)x(d− 1) ln x +
d

2
ln d + (1− (k + 1)x) ln(1− (k + 1)x)

−y ln y − z ln z − 1

2
(kxd− y) ln(kxd− y)− 1

2
(xd− y − z) ln(xd− y − z)

−1

2
((1− (k + 1)x)d− z) ln((1− (k + 1)x)d− z) .

It follows that if maxy,z f(x, y, z, k, d) < 0, then S(x, y, z) is exponentially small (for n
large) for any y, z. To maximize the function f, we need to consider the following system of
partial differential equations:

0 =
∂f

∂y
= − ln y +

1

2
ln(kxd− y) +

1

2
ln(dx− y − z)

0 =
∂f

∂z
= − ln z +

1

2
ln(dx− y − z) +

1

2
ln((1− (k + 1)x)d− z).

We therefore obtain that

y2
0

kxd− y0

=
z2
0

(1− (k + 1)x)d− z0

= dx− y0 − z0,
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which can be solved numerically. (Note that y0 and z0 are functions of x, as well as of k and
d.) Finally, if

f(x, y0, z0, k, d) = f(x, y0(x, k, d), z0(x, k, d), k, d) = f(x, k, d) < 0

for every x ∈ [0, x0], we derive that a.a.s. ρ(G, k) < 1− kx0.

We used this approach to obtain asymptotically almost sure upper bounds u(d, k) for the
surviving rate of random d-regular graph. When we quote numerical values for u(d, k), we
use five decimal places rounded up for upper bounds. For comparison purposes, let ū(d, k)
denote an explicit upper bound following from Theorem 4. In Figure 3, the values of u(d, k)
and ū(d, k) are given for k = 3 and k = 9 and all d-values between 20 and 200; we also
listed the first 18 and a few more values for higher d in Tables 1 and 2. The computations
presented in the paper were performed using C/C++. The code may be found on-line at [6].

(a) k = 3 (b) k = 9

Figure 3. Numerical and explicit upper bounds for d from 20 to 200.

d u(d, 3) ū(d, 3)
3 0.92591 4.77957
4 0.56484 2.24103
5 0.43280 1.59642
6 0.37460 1.30452
7 0.34316 1.13598
8 0.32383 1.02483
9 0.31088 0.94519
10 0.30165 0.88481
11 0.29477 0.83715

d u(d, 3) ū(d, 3)
12 0.28945 0.79836
13 0.28523 0.76604
14 0.28180 0.73859
15 0.27897 0.71492
16 0.27659 0.69425
17 0.27456 0.67600
18 0.27281 0.65974
19 0.27129 0.64513
20 0.26996 0.63193

d u(d, 3) ū(d, 3)
25 0.26517 0.58084
50 0.25684 0.46847
75 0.25440 0.42376
100 0.25324 0.39828
125 0.25257 0.38135
150 0.25212 0.36908
175 0.25181 0.35966
200 0.25158 0.35215

Table 1. Numerical and explicit upper bounds for k = 3 for some d values.

4. k-surviving rates of the infinite random graph

Firefighter is often studied in the context of infinite grid graphs in the plane. However, in
countably infinite graphs, we cannot define the k-surviving rate in the exact same fashion
as for finite graphs. For example, we cannot divide by the order of an infinite graph. A
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d u(d, 9) ū(d, 9)
3 0.40646 2.03138
4 0.21998 1.00622
5 0.17029 0.74001
6 0.14866 0.61632
7 0.13683 0.54313
8 0.12946 0.49380
9 0.12446 0.45777
10 0.12086 0.43001
11 0.11816 0.40777

d u(d, 9) ū(d, 9)
12 0.11606 0.38944
13 0.11438 0.37399
14 0.11301 0.36075
15 0.11187 0.34923
16 0.11091 0.33909
17 0.11009 0.33007
18 0.10939 0.32199
19 0.10877 0.31468
20 0.10823 0.30804

d u(d, 9) ū(d, 9)
25 0.10628 0.28203
50 0.10285 0.22289
75 0.10183 0.19859
100 0.10135 0.18455
125 0.10107 0.17514
150 0.10089 0.16827
175 0.10076 0.16298
200 0.10066 0.15875

Table 2. Numerical and explicit upper bounds for k = 9 for some d values.

natural definition is to write the graph as a limit of finite graphs, and take the limit of k-
surviving rate of graphs in the chain. However, different chains can lead to different limiting
k-surviving rates.

Let (Gt : t ∈ N) be a chain of finite connected graphs; that is, the sets {V (Gt) : t ∈ N}
and {E(Gt) : t ∈ N} are well-ordered. Define

V (G) =
⋃

t∈N
V (Gt), E(G) =

⋃

t∈N
E(Gt).

We write limt→∞ Gt = G, and say that G is the limit of the chain (Gt : t ∈ N). For example,
an infinite one way path (or ray) is the limit of the chain (Pt : t ∈ N).

Let C = (Gt : t ∈ N) be a chain of finite graphs (note that the limit of C is connected as
each Gt is). Define the limiting k-surviving rate of G (relative to the chain C) by

ρC(G, k) = lim
t→∞

ρ(Gt, k),

assuming this limit exists. Observe that ρC(G, k), when it exists, is a real number in the
interval [1/(k + 1), 1]. The value ρC(G, k) may strongly depend on the chain C used, but not
in all cases. For example, for a ray P = limt→∞ Pt, every chain is a set of paths, and so
ρC(P, k) = 1. The countably infinite clique has surviving rate 1

k+1
regardless of the chain

used (each element of the chain is a clique).
Define the probability space G(N, p) to be graphs with vertex set of positive integers, and

each distinct pair of integers is joined independently with probability p ∈ (0, 1). We will call
this space the infinite random graph. Erdős and Rényi [10] discovered the following theorem.

Theorem 8. For p ∈ (0, 1) with probability 1, the graph G(N, p) is unique up to isomorphism.

Define a graph to be existentially closed or e.c. if all finite disjoint sets of vertices A and
B (one of which may be empty), there is a vertex z joined to all of A and to no vertex of B.
We say that z is correctly joined to A and B. The proof of Theorem 8 follows by proving that
with probability 1, G(N, p) is e.c., and then proving that any two e.c. graphs are isomorphic.

The unique isomorphism type of infinite random graph is written R. We exploit the follow-
ing explicit representation of R as a limit graph. For a graph H, for each non-empty subset
S of V (H), add a new vertex zS joined to S and to no other vertices. The resulting graph,
written H(1), contains H as an induced subgraph. Note that if H has order n, then the
order of H(1) is n + 2n − 1 (note that we omit the case with S = ∅ as that would introduce
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an isolated vertex). We may iterate this process, so H(t + 1) = (H(t))(1). It is easy to see
that for a finite graph H, limt→∞ H(t) is e.c., and so is isomorphic to R. (Choose t large
enough such that H(t) contains both A and B. A vertex correctly joined to A and B may
be found in H(t + 1).)

Our main result in this final section is that for the infinite random graph, we can obtain
any real k-surviving rate in [1/(k + 1), 1].

Theorem 9. For each real number r ∈ [ 1
k+1

, 1], there is a chain C = (Gt : t ∈ N) of finite
graphs such that

(1) limt→∞ Gt
∼= R.

(2) ρC(R, k) = r.

We note that an analogous result was obtained for the cop number of a graph in [5], but
with one important caveat. In the definition of so-called cop density of a countably infinite
graph relative to a chain of finite induced subgraphs (that is, the limit of the ratio of the
cop number to the order of the graphs in the chain), graphs in the chain were allowed to
be disconnected. By a result of Frankl [13], if the graphs in the chain are connected, then
the limiting cop density is always 0 (he proved that the cop number of a connected graph of
order n is O(n log log n

log n
) = o(n).) Hence, Theorem 9 stands in stark contrast to the analogous

cop density theorem for R.
To prove the theorem, we need the following two lemmas.

Lemma 10. Fix a finite graph G of order n. Then,

ρ(G(1), k) =
1 + o(1)

k + 1
.

Lemma 11. Fix c a non-negative real number, a graph G of order N, and a vertex v of G.
Define G(1)(c,v) by first forming G(1) of order n = N + 2N − 1, then attaching a path of
length dcne to v. Then

ρ(G(1)(c,v), k) =
1

k+1
+ c(c + 2)

(c + 1)2
+ o(1).

Note that if c → 0, then
1

k+1
+ c(c + 2)

(c + 1)2
→ 1

k + 1
,

while c →∞ implies that
1

k+1
+ c(c + 2)

(c + 1)2
=

1
k+1

1
c2+2c

+ 1

1 + 1
c2+2c

→ 1.

In particular, Lemma 11 tells us that by choice of c, we can make ρ(G(1)(c,v), k) as close as
we like to any fixed real in [ 1

k+1
, 1].

Proof of Theorem 9. Fix a sequence ct of non-negative reals such that

lim
t→∞

1
k+1

+ ct(ct + 2)

(ct + 1)2
= r.

Note that if r < 1, then one can take a constant sequence. In order to get r = 1, we need to
take any sequence tending to infinity.
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Fix G0 = K1. For t ≥ 0, define Gt+1 = (Gt(1))(ct,v), where v is chosen arbitrarily in Gt(1).
Note that (Gt : t ∈ N) forms a chain C, and G = limt→∞ Gt is e.c. and so G ∼= R.

By Lemma 11,

ρ(Gt+1, k) =
1

k+1
+ ct(ct + 2)

(ct + 1)2
+ o(1).

Hence, ρC(R, k) = r. ¤
Proof of Lemma 10. We call vertices in V (G(1))\V (G) new. The new vertices with degree
one are called bad, and the remaining new vertices are good. Note that there are n bad
vertices and so there are 2n − 1− n good vertices.

We consider cases of where the fire can break out. If a fire breaks out on G, then each
vertex of G is joined to n new vertices of degree n− 1 so the fire can reach at least one such
a vertex in the next round. Spreading a fire from this vertex back to G, the firefighter can
only save at most (1 + o(1)) n

k+1
of these. Now a fire spreads to new vertices. Since all but

2(1+o(1))n/(k+1) = o(2n) new vertices are adjacent to the fire, the firefighter can only save at
most (1+o(1)) 2n

k+1
new vertices. If a fire starts at a good new vertex, then at least one vertex

of G can be set on fire in the next round. Hence, in the remaining rounds we are back in the
first case. If a fire breaks out on a bad vertex, then all but one vertex of G(1) can be saved.

We therefore have that

ρ(G(1), k) ≤ n + 2n − 1− n

n + 2n − 1
· (1 + o(1)) 1

k+1
(n + 2n)

(n + 2n − 1)
+

n

n + 2n − 1
· n + 2n − 2

n + 2n − 1

=
1 + o(1)

k + 1
.

The proof of the lemma now follows from (2.1). ¤

Proof of Lemma 11. By Lemma 10, ρ(G(1), k) = 1+o(1)
k+1

. If a fire breaks out on G(1), then the
firefighter chooses to save v in the first round (or save the vertex on the path adjacent to v in
the case v is on fire). Then (1+o(1)) n

k+1
vertices can be saved in G by protecting any vertex

in G(1) regardless of the fire’s strategy. As the fire cannot spread to the path, an additional
(1 + o(1))cn vertices are saved. Note that this strategy is asymptotically the best possible;
if the firefighter decides not to save v in the first round and focus on protecting graph G(1),
he would not be able to save more than (1 + o(1)) n

k+1
vertices in G(1) by Lemma 10.

If the fire breaks out on a vertex of the path not in G(1), then the firefighter can contain
it to save all but at most two vertices in G(1)(c,v). Hence,

ρ(G(1)(c,v), k) = (1 + o(1))
n

(
n

k+1
+ cn

)
+ cn(cn + n)

(cn + n)2

= (1 + o(1))

(
1

k+1
+ c

)
+ (c2 + c)

(c + 1)2

=
1

k+1
+ c(c + 2)

(c + 1)2
+ o(1). ¤
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