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Abstract. We prove that the endomorphism monoid of the infi-
nite random graph R contains as a submonoid an isomorphic copy
of each countable monoid. As a corollary, the monoid of R does not
satisfy any non-trivial semigroup identity. We also prove that the
full transformation monoid on a countably infinite set is isomorphic
to a submonoid of the monoid of R.

1. Introduction

The infinite random graph, written R, is the unique (up to isomor-
phism) countable graph that satisfies the existentially closed adjacency
property: for all finite disjoint sets of vertices A and B, there is a ver-
tex joined to each vertex of A and not joined nor equal to a vertex
of B. The graph R has many remarkable properties which have at-
tracted the attention of several researchers, including graph theorists,
logicians, and algebraists. One such property, known to Fräıssé [7] in
1953, is that R is a universal graph: each countable graph is isomor-
phic to an induced subgraph of R. We note that the term “universal
graph” has several meanings in graph theory. Sometimes it is restricted
to finite graphs (see [5]) and sometimes the class of subgraphs need not
be induced (see [8]). For other properties of R, the reader is directed
to the surveys of P. Cameron [3, 4].

While the automorphism group of R has been thoroughly inves-
tigated (see the references in [3]), properties of the endomorphism
monoid, or monoid, of R have been largely overlooked. In [2], the first
two authors initiated the study of the monoid of R, written End(R),
and characterized properties of its retracts. The monoid End(R) was
further studied in [1, 6].
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We prove in the present article that End(R) is universal as a monoid:
that is, it contains as a submonoid an isomorphic copy of each count-
able monoid; see Theorem 3. We say End(R) embeds each countable
monoid. We investigate some of the computational consequences of
this result in Corollaries 4 and 5, where we prove that End(R) satis-
fies no non-trivial semigroup identity, and has undecidable universal
theory, respectively. In Theorem 6 we prove that the full transforma-
tion monoid on a countable set embeds in End(R). This result gives a
second proof that End(R) is universal. For further background and no-
tation the reader is directed to [2]. Unless otherwise stated, all graphs
and semigroups considered are countable, and we consider only simple
undirected graphs.

2. The main result and its consequences

The following representation theorem (which, to our knowledge, is a
part of folklore) is fundamental to our approach.

Theorem 1. If S is a monoid of cardinality κ, then there is a graph
G such that S embeds in End(G) and |V (G)| ≤ ℵ0 + κ.

A graph G is algebraically closed if for each finite subset S of V (G),
there is a vertex z not in S that is joined to each vertex of S. The
following result is Proposition 4.2 of [2], which we restate here for
completeness.

Theorem 2. Let H be a graph. There is f ∈ E(End(R)) with R ¹
Im(f) ∼= H if and only if H is a countable algebraically closed graph.

We will use Theorem 2 in the proof of the following result, which is
our main theorem.

Theorem 3. If S is a countable semigroup, then S embeds in End(R).

Proof. Since each semigroup S may be embedded in a monoid with
cardinality at most |S| + 1, we may assume without loss of generality
that S is a monoid. By Theorem 1, let G be a countable graph such
that S embeds in End(G). Let

G+ = G ∨Kℵ0 ,

the graph formed by adding all edges between copies of G and Kℵ0 .
As G+ is algebraically closed, and since R is a universal graph, by
Theorem 2 there is a retract α ∈ E(End(R)) with Im(α) = V (G+).

Define ϕ : End(G+) → End(R) by

ϕ(f) =

{
fα if f 6= 1G+

1R else.
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If f, g ∈ End(G+) are distinct, then ϕ(f) and ϕ(g) are distinct. To
see this, first consider the case when neither f nor g are equal to 1G+ .
Note that if x ∈ V (G+), then ϕ(f)(x) = fα(x) = f(x) as α is a retract;
similarly, ϕ(g)(x) = g(x). Hence, ϕ(f) 6= ϕ(g) in this case. Suppose
now that exactly one of f or g equals 1G+ ; say f = 1G+ and g 6= f. By
the existentially closed property, R is not isomorphic to the join of two
countable graphs. In particular, R � G+. Hence, we may choose some
x ∈ V (R)\V (G+). Then ϕ(f)(x) = x, while ϕ(g)(x) = gα(x) ∈ V (G+).
Hence, ϕ(f) 6= ϕ(g) in this case as well.

Now, fix f, g ∈ End(G+). First consider the case when neither f
nor g equal 1G+ . Then ϕ(fg) = fgα, and ϕ(f)ϕ(g) = fαgα. Let x
be a fixed vertex of R. Consider fαgα(x). Then α(x) ∈ V (G+), and
so gα(x) ∈ V (G+). But since α is the identity on G+, we have that
αgα(x) = gα(x). Hence,

ϕ(f)ϕ(g)(x) = fαgα(x) = fgα(x) = ϕ(fg)(x).

Suppose now that exactly one of f or g equals 1G+ . Consider the case
when f = 1G+ and g 6= f . (The other case is similar, and so is omitted.)
Then ϕ(fg) = ϕ(1G+g) = ϕ(g), while ϕ(f)ϕ(g) = 1Rϕ(g) = ϕ(g).
Hence, ϕ is an embedding of monoids.

For a fixed f ∈ End(G), define ψ(f) = f ∪1Kℵ0
. That is, ψ(f) is the

self-mapping on G+ that is f on G and the identity on Kℵ0 . By the
properties of join for graphs, it is not hard to see that ψ(f) ∈ End(G+).
Hence, ψ : End(G) → End(G+) is well-defined, and the reader may
verify that it is injective.

For f, g ∈ End(G), ψ(fg) = fg ∪1Kℵ0
, and

ψ(f)ψ(g) = (f ∪ 1Kℵ0
)(g ∪ 1Kℵ0

).

To prove that ψ is an endomorphism, we consider cases for the location
of x ∈ V (G+).

If x ∈ V (G), then

ψ(fg)(x) = (fg ∪ 1Kℵ0
)(x) = fg(x)

= (f ∪ 1Kℵ0
)(g ∪ 1Kℵ0

)(x)

= ψ(f)ψ(g)(x),

since (g ∪ 1Kℵ0
)(x) = g(x) ∈ V (G). If x ∈ V (Kℵ0), then

ψ(fg)(x) = (fg ∪ 1Kℵ0
)(x)

= x = (f ∪ 1Kℵ0
)(g ∪ 1Kℵ0

)(x)

= ψ(f)ψ(g)(x).
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As x is arbitrary, we have that ψ(fg) = ψ(f)ψ(g), and so ψ is an
embedding of semigroups. The map ψ is an embedding of monoids since
ψ(1G) = 1G+ . To finish the proof, observe that ψϕ : End(G) → End(R)
is an embedding of monoids. ¤

Theorem 3 has the following computational consequences. We refer
the reader to Hodges [9] for any terms not explicitly defined.

Corollary 4. The monoid End(R) does not satisfy any non-trivial
semigroup (monoid) identity. In particular, End(R) generates the va-
riety of all semigroups (monoids).

Proof. Since every countable semigroup embeds into End(R) by The-
orem 3, so does the free semigroup on a countable set of generators,
written FSem(X). If there were an equation s = t in the language of
semigroups that is not consequence of the associative law, and satis-
fied by End(R), then s = t would be satisfied by FSem(X), which is a
contradiction. ¤
Corollary 5. The universal theory of End(R) is undecidable.

Proof. We first observe that the universal theory of End(R) equals the
universal theory of all semigroups. To see this, note that since every
countable semigroup embeds into End(R) by Theorem 3, every univer-
sal sentence true in End(R) will be true in all countable semigroups
and, by the Löwenheim-Skolem Theorem (see [9]), in all semigroups.

It is well-known that the universal theory of semigroups is undecid-
able. (See [11, 12, 13]. This is implied by the existence of a semi-
group with undecidable word problem.) Hence, the universal theory of
End(R) is undecidable. ¤

3. The full transformation monoid

If X is a nonempty set, then a self-mapping of X is a mapping from
X to X. The full transformation monoid, written T (X), is the monoid
of all self-mappings of X under composition. We prove in Theorem 6
below that T (X), where X is countably infinite, embeds in End(R). As
it is well-known that every countable semigroup embeds in T (X), this
gives a second proof of Theorem 3. The proof we give of Theorem 6
has the advantage over our proof of Theorem 3 that it does not rely on
results from logic nor on results from [2]. The monoid End(R) (which
has cardinality 2ℵ0) does not embed all monoids of cardinality at most
2ℵ0 . The reason for this is that T (X), where X is countable, does not
embed all monoids of cardinality at most 2ℵ0 , and by Theorem 6, T (X)
and End(R) are mutually embeddable. For example, an uncountable
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direct sum of countable simple groups does not embed into T (X) [10].
We do not know, however, exactly which uncountable monoids embed
in End(R).

If (Gn : n ∈ N) is a sequence of graphs with Gn ≤ Gn+1, then define

lim
n→∞

Gn =
⋃

n∈N
Gn;

we call limn→∞ Gn the limit of the sequence (Gn : n ∈ N). We say that
(Gn : n ∈ N) is a chain of graphs.

Theorem 6. The transformation monoid T (X), where X is countable,
embeds in End(R).

Proof. We define a countably infinite graph R∗ by induction on n ∈ N.
Let R0 be an isomorphic copy of Kℵ0 . Assume that Rn has been defined
so that R0 is an induced subgraph of Rn, and V (Rn) is countable.
To define Rn+1, for each finite subset S ⊆ V (Rn), add a new vertex
xS /∈ V (Rn) so that xS is joined to exactly the vertices of S.

As (Rn : n ∈ N) is a chain, we define R∗ = limn→∞ Rn. It is not hard
to see that R∗ is existentially closed; hence, R∗ ∼= R. We identify R∗

with R in what follows.
Since each self-mapping of Kℵ0 is an endomorphism, we have that

End(R0) ∼= T (X). Fix f ∈ End(R0); let f = f0. Assume that fn ∈
End(Rn) is defined, and fn ¹ R0 = f0. Define

fn+1(z) =

{
xfn(S) if z = xS

fn(z) if z ∈ V (Rn).

The mapping fn+1 extends fn; that is, fn+1 ¹ Rn = fn. To see that
fn+1 is a homomorphism, by inductive hypothesis, and since any two
vertices x, y ∈ V (Rn+1) \ V (Rn) are not joined, we need only consider
the case when x ∈ V (Rn+1)\V (Rn), y ∈ V (Rn), and xy is an edge of
Rn+1. By construction, x is the vertex xS ∈ V (Rn+1)\V (Rn) for some
unique finite subset S ⊆ V (Rn); hence, y ∈ S. But then

fn+1(x)fn+1(y) = xfn(S)fn(y) ∈ E(Rn+1),

since fn(y) ∈ fn(S) and xfn(S) is joined to each vertex of fn(S).
Define F =

⋃
n∈N fn. Then F extends f and is an endomorphism of

R. Define ϕ : T (X) → End(R) by ϕ(f) = F. Since F extends f, we
have that ϕ is injective. To complete the proof, we now show that ϕ is
an embedding of monoids.

Fix f, g ∈ T (X) = End(R0). It is sufficient to prove that ϕ(fg)n =
ϕ(f)nϕ(g)n for all n ∈ N. This holds for n = 0, so we proceed by
induction on n. If we consider the case for n + 1, then we must show
that ϕ(fg)n+1(x) = ϕ(f)n+1ϕ(g)n+1(x), for each x ∈ V (Rn+1). By
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inductive hypothesis, we may assume that x /∈ V (Rn). Hence, x is
some vertex xS ∈ V (Rn+1) \ V (Rn), where S ⊆ V (Rn) is finite and
unique. Then

ϕ(fg)n+1(x) = (fg)n+1(x) = x(fg)n(S) = xfn(gn(S)) = fn+1(xgn(S))

= fn+1gn+1(x) = ϕ(f)n+1ϕ(g)n+1(x),

where the third equality follows by the inductive hypothesis. ¤
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