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Abstract. Complex real-world networks such as the web graph are often mod-
elled as directed graphs evolving over time, where new vertices are joined to a
constant m number of existing vertices of prescribed type. We consider a cer-
tain on-line random construction of a countably infinite graph with out-degree
m, and show that with probability 1 the construction gives rise to a unique
isomorphism type. We show that random semi-directed graphs are prime mod-
els in a certain first-order theory. We study algebraic properties of random
semi-directed graphs; in particular, we prove that their automorphism groups
embed all countable groups.

1. Introduction

Complex networks arise in many real-world contexts, ranging from the web
graph to networks arising in the biological and social sciences. Such networks
are usually modelled as directed graphs (digraphs) that evolve over time, where
new vertices and edges are born over time. A large number of stochastic models
for complex networks have been proposed; see [4, 13] for a discussion of such
models. For example, in the preferential attachment model introduced in [1, 2],
new vertices are born over time which have a greater probability to join to high
degree vertices. The digraphs generated by the preferential attachment models
have the property that each vertex has exactly m out-neighbours. Constant out-
degree is in fact, a common assumption in other models of complex networks; see,
for example, [1, 2, 13, 20]. Hence, models of complex networks often generate
directed graphs satisfying the following properties.

(1) On-line: digraphs are generated over a countably infinite set of discrete
time-steps, with a countable (either finite or countably infinite) set of
vertices born at each time-step. At time 0, a fixed initial digraph H is
given.

(2) Constant out-degree: new vertices have edges directed only to existing
vertices, and for m > 0 a fixed integer, there are exactly m such edges.

A digraph G satisfying these two properties is called semi-directed with initial
graph H and constant out-degree m; we sometimes refer to G simply as semi-
directed. The moniker “semi-directed” comes from [3] (see p. 17). It emphasizes
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that the orientation of edges in a semi-directed graph canonically arises accord-
ing to time: new vertices may only point to vertices born at earlier time-steps.
Note that semi-directed graphs have no infinite directed path emanating from any
vertex, are connected, and is acyclic so long as H is acyclic.

We consider the infinite semi-directed limit graphs that result when time tends
to infinity. Analyzing stochastic models by considering the infinite limit is a
common technique in the natural sciences. In particular, the existence of a unique
limit indicates coherent behaviour of the model, while many distinct limits suggest
a sensitivity to initial conditions that is an indicator of chaos. In [7, 8, 19], infinite
limits of graphs generated by models of the web graph were investigated. Limits
generated by on-line graph processes were, in fact, studied by Fräıssé [16] and
others decades prior to birth of the internet.

One of the most studied examples of an infinite limit graph arising from a
stochastic model is the infinite random graph. The probability space G(N, p)
consists of graphs with vertices N, so that each distinct pair of integers is joined
independently with a fixed probability p ∈ (0, 1). Erdős and Rényi discovered
that with probability 1, all G ∈ G(N, p) are isomorphic. The unique isomorphism
type of countably infinite graph is named the infinite random graph, or the Rado
graph, and is written R; see the survey [10].

Define a deterministic graph R∗ as follows. Let R0 be the graph with one
vertex, K1. Assume that for a nonnegative integer t ≥ 0, the graph Rt is defined
and finite. To form Rt+1, for each subset S ⊆ V (Rt) (possibly empty) add a vertex
zS joined only to the vertices of S. The sets {V (Rt) : t ∈ N} and {E(Rt) : t ∈ N}
are well-ordered sets or chains. We define

V (R∗) =
⋃

t∈N
V (Rt), E(R∗) =

⋃

t∈N
E(Rt).

We write limt→∞ Rt = R∗, and say that R∗ is the limit of the chain (Rt : t ∈ N).
The notion of limit extends to any chain (Gt : t ∈ N) of graphs.

A graph G is existentially closed or e.c. if for all finite disjoint sets of vertices
A and B (one of which may be empty), there is a vertex z /∈ A ∪ B joined to
all of A and to no vertex of B. By a back-and-forth argument, R ∼= R∗ is the
unique isomorphism type of countably infinite graphs that is e.c. Further, R is a
universal graph: it contains as an induced subgraph an isomorphic copy of each
countable graph.

In the present article, we consider structural, logical, and algebraic properties
of certain infinite semi-directed graphs that arise naturally as limits of on-line ran-
dom processes. The current article is the full version of [6]. Analogous to R, these
so-called random semi-directed graphs have isomorphism types characterized via
a set of adjacency properties (see Theorem 1). As an application of the character-
ization, random semi-directed graphs are shown to be universal (see Corollary 2).
Random semi-directed graphs are generated with probability 1 by a natural sto-
chastic process (see Corollary 4). We explore some of the first-order properties
of semi-directed graphs. While semi-directedness is not a first-order property, we
show in Theorem 5 that the random semi-directed graphs form a class of prime
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models in a suitable first-order theory. The automorphism group of R has been
thoroughly investigated (see [10]). In Section 3 we show that all countable groups
embed in the group of a random semi-directed graph. This property of the auto-
morphism group of random graph parallels the universality result of Corollary 2.
The universality of the automorphism group of random semi-directed graphs is
used to show in Corollary 9 that their universal theories are undecidable.

All graphs we consider are simple (that is, no loops nor multiple edges), directed,
and countable. If (x, y) is a directed edge, then y is an out-neighbour of x. We say
that G embeds in H and write G ≤ H if G is isomorphic to an induced subdigraph
of H. If S ⊆ V (G), then we write G[S] for the subdigraph induced by S (we omit
the subscript G if it is clear from context). An independent set of vertices is a set
of vertices with no directed edges between them. The vertices of a semi-directed
graph with initial graph H may be ordered in the following way. A vertex x not
in H has height k if there is a directed path of length k from x ending in a vertex
of H, and there is no such path of length less than k. Vertices in H have height
0. The height of a finite set S of vertices is the maximum height of a vertex in S.
For background in graph theory, the reader is directed to [14, 24].

The automorphism group (or group) of G is written Aut(G). We write N for
the natural numbers, N+ for the positive integers, and ℵ0 for the cardinality of N.

2. Random semi-directed graphs

We consider the following general framework for limits of semi-directed graphs.
A class C of digraphs closed under isomorphism is good if it both contains infinitely
many digraphs, and is hereditary : if G ∈ C and H ≤ G, then H ∈ C. For example,
the class of all digraphs is good, as the class of linear orders (that is, transitive
tournaments).

For the remainder of the article, fix m > 0 an integer, C a good class of digraphs,
and H an m-vertex digraph in C (which exists as C is good). We define a countably
infinite graph Rm,H(C) as follows. Let R0 be H. Assume that Rt is defined and
countable so that R0 ≤ Rt. To form Rt+1, for each induced subdigraph S of Rt

that has m vertices and is in C, add a vertex xS that is joined to each vertex of S
(that is, there are directed edges from xS to each vertex of S) and no other vertices
in Rt. Define Rm,H(C) = limt→∞ Rt. The countably infinite digraph Rm,H(C) is
semi-directed by its construction. The idea behind the definition of Rm,H(C) is
that all m-sets of vertices S that induce a graph in C are extended: the vertex xS

has its out-neighbours equalling S. We say that the vertex xS was born at time t.
Observe that vertices born at time t have height t.

One of our main results is that the isotype of Rm,H(C) may be captured by a set
of simple set of properties. We say that a digraph G is (C,m)-e.c. if for each set A
of m-vertices which induces a graph in C and each finite set B of vertices disjoint
from A, there is a vertex z 6∈ A∪B so that (z, a) ∈ E(G) for all a in A, but there
are no directed edges between z and vertices of B. The (C,m)-e.c. property is a
directed analogue of the e.c. property, relativized by the parameter m and by the
restriction that G[A] ∈ C. We note that (assuming that the class C is axiomatized
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by finitely many first-order sentences), that the (C,m)-e.c. property is first-order
expressible in the language of graphs; see Subsection 2.2.

Theorem 1. A countable digraph G is isomorphic to Rm,H(C) if and only if G is
semi-directed with initial graph H and constant out-degree m, each out-neighbour
set induces a subdigraph in C, and G is (C,m)-e.c.

Proof. As the forward direction is immediate, we prove only the reverse direction.
Let H ′ be the initial copy of H in G. The set V (G)\V (H ′) has a topological
sort : an enumeration (xt : t ∈ N+) of V (G)\V (H ′) with the property that if
(xi, xj) is a directed edge, then i > j. To see this, we may choose x1 to be any
vertex with height 1. Assuming that {x1, . . . , xt} were chosen, consider a vertex
u of V (G)\(V (H ′) ∪ {x1, . . . , xt}). If u has out-degree 0 in G[V (G)\(V (H ′) ∪
{x1, . . . , xt})], then let xt+1 = u. Otherwise, in G[V (G)\(V (H ′) ∪ {x1, . . . , xt})]
there is a maximal directed finite path from u. The end point v of this path has
out-degree 0, and we choose xt+1 = v.

As G is arbitrary with the given properties, it follows that Rm,H(C) also has
a topological sort. Now, let (xt : t ∈ N+) and (yt : t ∈ N+) be topological sorts
of V (G)\V (H ′) and V (Rm,H(C))\V (R0), respectively. We proceed by a back-
and-forth argument, with f0 isomorphically mapping H ′ in G to H at time 0 in
Rm,H(C). For t ≥ 0, suppose that ft is a partial isomorphism with domain Xt

containing V (H ′)∪{x1, . . . , xt} and range Yt containing V (R0)∪{y1, . . . , yt}. We
will assume as an additional inductive hypothesis that Xt and Yt are closed : all
out-neighbours of vertices in the set are in the set itself.

Suppose first that t + 1 ≥ 1 is odd. In this case, we go forward. Let x be the
lowest indexed vertex of (xt : t ∈ N) not in Xt. As the enumeration is a topological
sort, the set of out-neighbours St of x are in Xt; as Xt is closed, no vertex of Xt

points to x. By hypothesis, |St| = m and G[St] ∈ C. As Rm,H(C) satisfies the
(C,m)-e.c. property, there is a vertex y whose out-neighbours are exactly ft(St).
As Yt is closed, no vertex of Yt points to y. Note that Rm,H(C)[ft(St)] ∈ C. Extend
ft to ft+1 by mapping x to y, and let Xt+1 = Xt ∪ {x} and Yt+1 = Yt ∪ {y}. It
is straightforward to see that ft+1 is an isomorphism, and that the sets Xt+1 and
Yt+1 are closed.

The case t + 1 is even is similarly proven by going back, and so is omitted. We
therefore have that the union of the chain of partial isomorphisms (ft : t ∈ N)

F =
⋃

t→∞
ft

is an isomorphism of G with Rm,H(C). ¤

Analogous to the situation for R and all countable graphs, the graph Rm,H(C)
has the following universal property.

Corollary 2. If G is a countable semi-directed graph with initial graph H and
constant out-degree m, so that each out-neighbour set of a vertex of G induces a
subgraph in C, then G ≤ Rm,H(C).
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Proof. Let H ′ be the initial copy of H in G, and let f0 isomorphically map H ′ in
G to H at time 0 in Rm,H(C). As in the proof of Theorem 1, let (xt : t ∈ N+) be
a topological sort of V (G)\V (H ′).

For t ≥ 0, suppose that ft is an isomorphism with domain Xt = V (H ′) ∪
{x1, . . . , xt} whose range equals the set Yt of vertices in Rm,H(C). Consider the
vertex xt+1. The set of m out-neighbours St of xt+1 are in Xt, by the properties of
the ordering (xt : t ∈ N+). By hypothesis, St induces a subgraph in C. It follows
that in Rm,H(C), there is a vertex yt+1 not in Yt whose out-neighbours are exactly
ft(St). We extend ft to the isomorphism ft+1 which maps xt+1 to yt+1.

Define

F =
⋃

t→∞
ft.

Then F witnesses that G ≤ Rm,H(C). ¤

2.1. A random graph process. We next introduce a random graph process
which we name the Age Dependent Process (ADP). The parameters of the process
are m, C, and H ∈ C. Start with G0

∼= H with vertices labelled v1, . . . vm. For
t ≥ 1 fixed, assume that a digraph Gt−1 has been defined and there are finitely
many vertices in Gt−1. At time t, add a new vertex vm+t, and choose a set S of m
distinct vertices from V (Gt−1) so that S induces a subdigraph of C, where a vertex
vi is included in the set independently with probability exponentially proportional
to the time it was born. More precisely, denote

Lt−1 = {(j1, . . . , jm) ∈ Nm : Gt−1[{vj1 , . . . , vjm}] ∈ C,
vj1 , . . . , vjm ∈ V (Gt−1) are distinct}.

For each S = {vi1 , . . . , vim} where (i1, . . . , im) ∈ Lt−1, define

µ(S) = 2−(i1+···+im)

and

Nt =
∑

(j1,...,jm)∈Lt−1

2−(j1+j2+···+jm).

In particular, Nt is the sum of all the µ(S), where S is a subset of cardinality
m from V (Gt−1) such that Gt−1[S] ∈ C. The probability that S is chosen from
V (Gt−1) equals µ(S)/Nt; this clearly defines a probability measure on m-subsets
S with Gt[S] ∈ C in Gt. If S is so chosen, then add directed edges from vm+t to
each vertex of S.

Theorem 3. Let G = limt→∞ Gt, where Gt is generated by ADP with parameters
m, H, and C. Then with probability 1, G is (C,m)-e.c.

Proof. Fix disjoint finite subsets A and B of V (G) so that |A| = m and G[A] ∈ C.
Let A = {vi1 , . . . , vim}, where the vertex vij was born before vij+1

for all j. Let t0
be an integer greater than the height of A∪B. For each t ≥ t0, let Vt be the event
that vt is pointing to exactly all vertices in A. Note that vt has out-degree m when
it is born, so that if Vt occurs, then there are no edges between vt and any vertex
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of B. Then the probability that Vt occurs, written P(Vt), equals 2−(i1+···+im)/Nt,
where Nt is the normalizing factor defined above.

Note that

Nt ≤
∑

1≤j1<j2<···<jm≤t+m−1

2−(j1+j2+···+jm)

≤
(

t+m−1∑
j=1

2−j

)m

≤ 1,

for all t. Therefore, for all t ≥ t0,

P(Vt) ≥ 2−(i1+···+im) ≥ 2−mt0 .

Hence, the probability that there exists no vertex in G that is joined to all
vertices in A and none of B is at most

P

( ∞⋂
t=t0

Vt

)
=

∞∏
t=t0

(1− P(Vt))

≤ lim
t≥t0

(1− 2−mt0) = 0.

As there are only countably many finite subsets A and B and a countable union
of measure 0 events is a measure 0 event, the proof follows. ¤

The following corollary follows immediately from Theorems 1 and 3. It supplies
an analogue of the Erdős and Rényi isomorphism result for R.

Corollary 4. With probability 1, a limit graph generated by ADP with parameters
m, H, and C is isomorphic to Rm,H(C).

2.2. Model-theoretic properties of Rm,H(C). We investigate some of the first-
order model-theoretic properties of semi-directed graphs. We work within the
first-order language of graphs LG, which contains one binary relation symbol E.
We consider a digraph as an LG-structure, where E is taken as irreflexive binary
relation on vertices. The (first-order) LG-sentences, or sentences, are defined in
the usual way using E, =, and the standard logical connectives and quantifiers.
An LG-theory is a set of LG-sentences; the theory of an LG-structure M , written
Th(M), is the set of LG-sentences satisfied by M . For background in first-order
logic and its model theory, see [18].

An LG-theory T is ℵ0-categorical if every two countable models of T are iso-
morphic. If we consider the first-order theory of undirected graphs where E is
interpreted as a symmetric binary relation, then Th(R) is ℵ0-categorical, and is
axiomatized by the e.c. property (that is, the models of Th(R) are exactly the e.c.
graphs).

An easy (and so omitted) Compactness argument demonstrates that the on-line
property (item 1 in the definition of semi-directedness) is not first-order expressible
in LG. However, for semi-directed graphs we consider the following LG-theory Φ.
The set Φ contains the digraph axioms, and the following sentences. Fix m > 0
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an integer, and choose C a good class so it is first-order axiomatizable by finitely
many sentences (for example, as is the case for the class of all digraphs). For
simplicity, take H to be the digraph with m vertices and no edges.

(1) There are exactly m vertices of out-degree 0 which form an independent
set. All other vertices have out-degree m.

(2) The out-neighbour set of each vertex induces a subdigraph in C.
(3) There are no directed cycles.
(4) The (C,m)-e.c. property holds.

It is straightforward to verify that the sentences in Φ are indeed first-order
expressible in LG. We remark that an analogous theory was presented in [19] for
the case m = 2. By its construction, the digraph Rm,H(C) satisfies Φ. However,
unlike Th(R), the theory Φ is not ℵ0-categorical. For example, if we let Rm,H(C)n

denote the disjoint union of n copies of Rm,H(C), where 2 ≤ n ≤ ℵ0, then Rm,H(C)n

satisfies Φ and none of these graphs are pairwise isomorphic.
We next observe that Rm,H(C) is a (algebraically) prime model for Φ: each

model of Φ contains an isomorphic copy of Rm,H(C). Theorem 5 is an interesting
contrast to the universality result of Corollary 2.

Theorem 5. The digraph Rm,H(C) is a prime model for the theory Φ.

Proof. Suppose that G is a model of Φ. By the (C,m)-e.c. property, H is isomor-
phic to an induced subdigraph of G. (More explicitly, we may build a copy of H
in G inductively, by extending a given independent set X by a vertex joined to
nothing in X.) Let f0 isomorphically map H at time 0 in Rm,H(C) to an arbitrary
but fixed copy X0 of H in G.

For t ≥ 0, suppose that ft is an isomorphism with domain Rt = V (Rm,H(C))
whose range is an induced subdigraph Xt of G. Fix a set of vertices S of Rt

that has m vertices and which induces a subdigraph in C; by the construction of
Rm,H(C) the vertex xS is joined to each vertex of S. By the (C,m)-e.c. property
for G, there is a vertex yft(S) whose out-neighbour set is exactly ft(S), and such
that there are no directed edges between Xt \ ft(S) and yft(S).

We extend ft to the isomorphism ft+1 which maps xS to yft(S) for all choices
of S in Rt. It is straightforward to see this is an isomorphism of Rt+1 onto an
induced subdigraph of G. Define

F =
⋃

t→∞
ft.

Then F witnesses that Rm,H(C) ≤ G. ¤

3. The group of Rm,H(C)

The infinite random graph R possesses a rich group of symmetries. In particular,
the graph R is homogeneous : isomorphisms between finite induced subgraphs
extend to automorphisms. The homogeneous graphs were characterized in [22],
while the homogeneous digraphs were characterized in [11]. The graph Rm,H(C)
is not homogeneous; it is not even vertex-transitive: two vertices with different
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heights are in different orbits of Aut(Rm,H(C)). Hence, the symmetries exhibited
by R and Rm,H(C) are quite different.

Henson [17] proved that Aut(R) embeds (that is, contains subgroups isomorphic
to) all countable groups. We now prove that the group Aut(Rm,H(C)) shares this
property with R. Given a set X, we use the notation Sym(X) for the group of
permutations of X. For a set S of vertices and automorphism f, f(S) is the image
of S under f.

Theorem 6. The group Sym(X) embeds in Aut(Rm,H(C)), where X is countably
infinite. In particular, each countable group embeds in Aut(Rm(C)).

Theorem 6 is, after Corollary 2, our second universality result for Rm,H(C).
Before we prove Theorem 6 we need the following lemma. The graph Rm,H(C)′

is defined analogously to Rm,H(C), but at each time-step Rt+1, infinitely many
vertices xS are joined to each induced subdigraph of order m from C in Rt.

Lemma 7. The digraph Rm,H(C)′ is isomorphic to Rm,H(C).

Proof. It is sufficient to prove that Rm,H(C)′ satisfies the hypotheses of Theorem 1.
By its construction, the graph Rm,H(C)′ is semi-directed with initial graph H and
constant out-degree m. Further, each vertex has its out-neighbour set inducing an
m-vertex subdigraph in C. To see that Rm,H(C)′ satisfies the (C,m)-e.c. property,
suppose we are given A a set of m-vertices in Rm,H(C)′ which induces a graph
in C, and a finite set B of vertices in Rm,H(C)′ disjoint from A. Let t0 be the
maximum time a vertex of A ∪ B was born. A vertex joined to A and not to B
may be found in Rt0+1. ¤
Proof of Theorem 6. Without loss of generality, by Lemma 7 we will work with
Rm,H(C)′ for the remainder of the proof. By Cayley’s theorem, it is sufficient to
prove that Sym(X) embeds in Aut(Rm,H(C)′).

We first observe that Sym(X) embeds in Aut(R1). To see this, label the vertices
of V (R1)\V (R0) as X = {xi : i ∈ N}. Fix a bijective mapping f : X → X. Define
F : R1 → R1 which acts as the identity on H, and otherwise acts as f on X. As
the xi have the same out-neighbours in R1, it follows that F is an automorphism
of R1. Define β : Sym(X) → Aut(R1) by β(f) = F. It is straightforward to check
that β is an injective group homomorphism.

We next prove that there exists an injective group homomorphism

α : Aut(R1) → Aut(Rm,H(C)′).

Once this is established, then αβ : Sym(X) → Aut(Rm,H(C)′) supplies an embed-
ding of Sym(X) into the automorphism group Aut(Rm,H(C)′), and the assertion
will follow.

Fix j an automorphism of R1. Let J1 = j. For t ≥ 1, assume that Jt is an
automorphism of Rt, and the restriction of Jt to R1 equals J1. Let N+(z) be the
set of out-neighbours of a vertex z. Define Jt+1 by

Jt+1(z) =

{
Jt(z) if z ∈ V (Rt);
xJt(S) if z = xS and S = N+(z).
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From the definition of Rt+1 and the fact that Jt ∈ Aut(Rt), it follows that Jt+1 is
an automorphism of Rt+1. Note that Jt+1 restricted to Rt equals Jt.

The map J =
⋃

t∈N Jt is an automorphism of Aut(Rm,H(C)′). Hence, the func-
tion α : Aut(R1) → Aut(Rm,H(C)′) defined by α(j) = J is well-defined. It is
straightforward to see that α is injective, and that α preserves the identity auto-
morphism.

Now fix f, g ∈ Aut(R1) and z ∈ V (RH). We prove by induction on time t that
the vertex z was born that

(3.1) α(fg)(z) = α(f)α(g)(z).

Equation (3.1) will establish that α is an embedding of groups, and is immediate
if t = 0. Fix t ≥ 1. Suppose that z was born at time t + 1 and so z is of the form
xS, where S = N+(z) ⊆ V (Rt). Then

α(fg)(z) = xα(fg)(S)

= xα(f)α(g)(S)

= α(f)α(g)(z).

The second equality follows since the times that vertices of S were born are all
strictly less than t + 1, and by induction hypothesis. ¤

The property of extending automorphisms of R1 to automorphisms of all of
Aut(Rm,H(C)) in the proof of Theorem 6 clearly generalizes to any Rt with t ≥ 0.
In particular, j ∈ Aut(Rt) extends to J ∈ Aut(Rm,H(C)), and the map αt :
Aut(Rt) → Aut(Rm,H(C)′) defined by αt(j) = J is an injective group embedding.
Although Aut(Rm,H(C)) is not homogeneous, we may refer to the above property
as temporal homogeneity : symmetries of the graphs Rt at time t lift to symmetries
of the entire limit graph.

We consider some computational consequences of Theorem 6. We refer the
reader to Hodges [18] for any terms not explicitly defined. The language of groups
L contains a binary function symbol ·, a unary function −1, and a constant symbol
1. A group is considered as an L-structure in the usual way, and satisfies the group
axioms. A universal sentence is the smallest class of L-formulas which contains
the quantifier-free formulas and is closed under conjunction and disjunction, and
adding universal quantifiers at the front. The universal theory of a group G is the
set of universal L-sentences satisfied by G, and the universal theory of all groups
is the set of universal sentences satisfied by all groups.

Corollary 8. The group Aut(Rm,H(C)) does not satisfy any non-trivial group
identity. In particular, Aut(Rm,H(C)) generates the variety of all groups.

Proof. Since every countable group embeds into Aut(Rm,H(C)) by Theorem 6, so
does the free group on a countable set of generators, written F (X). If there were
an equation s = t in L that is not a consequence of the groups axioms, and
satisfied by Aut(Rm,H(C)), then s = t would be satisfied by F (X), which is a
contradiction. ¤
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A theory T in the language of groups is decidable if there is an effective pro-
cedure that, given an arbitrary formula in the of the theory, decides whether the
formula is a member of the theory or not.

Corollary 9. The universal theory of Aut(Rm,H(C)) is undecidable.

Proof. We first note that the universal theory of Aut(Rm,H(C)) equals the uni-
versal theory of all groups. This follows since every countable group embeds into
Aut(Rm,H(C)) by Theorem 6, every universal sentence true in Aut(Rm,H(C)) will
be true in all countable groups and, by the Löwenheim-Skolem Theorem (see [18]),
in all groups.

It is well-known that the universal theory of groups is undecidable. This fact
follows this by the existence of a group with an undecidable word problem; see
[9, 23]. Hence, the universal theory of Aut(Rm,H(C)) is undecidable. ¤
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